Advertisement

Hierarchical Generative Modeling and Monte-Carlo EM in Riemannian Shape Space for Hypothesis Testing

  • Saurabh J. ShigwanEmail author
  • Suyash P. Awate
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9902)

Abstract

Statistical shape analysis has relied on various models, each with its strengths and limitations. For multigroup analyses, while typical methods pool data to fit a single statistical model, partial pooling through hierarchical modeling can be superior. For pointset shape representations, we propose a novel hierarchical model in Riemannian shape space. The inference treats individual shapes and group-mean shapes as latent variables, and uses expectation maximization that relies on sampling shapes. Our generative model, including shape-smoothness priors, can be robust to segmentation errors, producing more compact per-group models and realistic shape samples. We propose a method for efficient sampling in Riemannian shape space. The results show the benefits of our hierarchical Riemannian generative model for hypothesis testing, over the state of the art.

Keywords

Kendall shape space Hierarchical model MCEM Shape sampling 

References

  1. 1.
    Allassonniere, S., Amit, Y., Trouve, A.: Toward a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B 69(1), 3–29 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allassonniere, S., Kuhn, E., Trouve, A.: Construction of bayesian deformable models via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3), 641–678 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cates, J., Fletcher, T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. Proc. Inf. Process. Med. Imaging 20, 333–45 (2007)Google Scholar
  4. 4.
    Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  5. 5.
    Dambreville, S., Rathi, Y., Tannenbaum, A.: A framework for image segmentation using shape models kernel space shape priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1385–1399 (2008)CrossRefGoogle Scholar
  6. 6.
    Durrleman, S., Pennec, X., Trouve, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Med. Imaging Anal. 13(5), 793–808 (2009)CrossRefGoogle Scholar
  7. 7.
    Fletcher, T., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  8. 8.
    Gaikwad, A.V., Shigwan, S.J., Awate, S.P.: A statistical model for smooth shapes in kendall shape space. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 628–635. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24574-4_75CrossRefGoogle Scholar
  9. 9.
    Gelman, A.: Multilevel (hierarchical) modeling: what it can and cannot do. Am. Stat. Assoc. 48(3), 432–435 (2006)MathSciNetGoogle Scholar
  10. 10.
    Glasbey, C.A., Mardia, K.V.: A penalized likelihood approach to image warping. J R. Stat. Soc. Ser. B 63(3), 465–514 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goodall, C.: Procrustes methods in statistical analysis of shape. J. R. Stat. Soc. 53(2), 285–339 (1991)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kendall, D.: A survey of the statistical theory of shape. Stat. Sci. 4(2), 87–99 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    MacKay, D.: Information Theory, Inference, Learning Algorithms. Cambridge University Press, Cambridge (2012)Google Scholar
  14. 14.
    Moore, D., Crisco, J., Trafton, T., Leventhal, E.: A digital database of wrist bone anatomy and carpal kinematics. J. Biomech. 40(11), 2537–2542 (2007)CrossRefGoogle Scholar
  15. 15.
    Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pizer, S., Jung, S., Goswami, D., Vicory, J., Zhao, X., Chaudhuri, R., Damon, J., Huckemann, S., Marron, J.: Nested sphere statistics of skeletal models. Innov. Shape Anal. 93 (2012)Google Scholar
  17. 17.
    Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Springer, Netherlands (2008)CrossRefGoogle Scholar
  18. 18.
    Terriberry, T.B., Joshi, S.C., Gerig, G.: Hypothesis testing with nonlinear shape models. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 15–26. Springer, Heidelberg (2005). doi: 10.1007/11505730_2CrossRefGoogle Scholar
  19. 19.
    Vaillant, M., Glaunès, J.: Surface matching via currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Mohamed, S., Freitas, N.: Adaptive Hamiltonian and Riemann manifold monte carlo samplers. Proc. Int. Conf. Mach. Learn. 3, 1462–1470 (2013)Google Scholar
  21. 21.
    Yu, Y.-Y., Fletcher, P.T., Awate, S.P.: Hierarchical bayesian modeling, estimation, and sampling for multigroup shape analysis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 9–16. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10443-0_2CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentIndian Institute of Technology (IIT) BombayMumbaiIndia

Personalised recommendations