Advertisement

The Underwater Light Climate in Kongsfjorden and Its Ecological Implications

  • Alexey K. Pavlov
  • Eva Leu
  • Dieter Hanelt
  • Inka Bartsch
  • Ulf Karsten
  • Stephen R. Hudson
  • Jean-Charles Gallet
  • Finlo Cottier
  • Jonathan H. Cohen
  • Jørgen Berge
  • Geir Johnsen
  • Marion Maturilli
  • Piotr Kowalczuk
  • Sławomir Sagan
  • Justyna Meler
  • Mats A. Granskog
Chapter
Part of the Advances in Polar Ecology book series (AVPE, volume 2)

Abstract

Due to its Arctic location at 79°N, Kongsfjorden in Svalbard experiences strong seasonality in light climate, changing from polar night to midnight sun. Sea ice conditions and the optical properties of seawater further modify the amount and the spectral composition of solar radiation penetrating into the water column, thus defining the underwater light climate in Kongsfjorden. Light represents one of the major shaping factors for the entire marine ecosystem. A number of studies focusing on implications of the underwater light for marine organisms have been conducted in Kongsfjorden, generating diverse datasets on seawater optical properties, scattered over time and space. This review synthesizes the fragmentary information available from the literature as well as presenting some unpublished data, and discusses the underwater light climate and its main controlling factors in Kongsfjorden. Furthermore, we provide a short synopsis about the relevance of light for different components of an Arctic marine ecosystem, exemplified by studies carried out in Kongsfjorden. Due to its year-round accessibility and its high-Arctic location, Kongsfjorden has become a prime fjord for studying how the strong seasonal changes in light availability, ranging from polar night to midnight sun, affect marine life with respect to primary production, behavioural aspects and synchronization of growth and reproduction.

Keywords

Arctic Svalbard PAR UVR Optical properties Marine ecosystem 

Notes

Acknowledgement

We thank organizers of the Kongsfjorden Ecosystem Workshop (Hamn i Senja, March 2014) for the initiation of this review study. For AP, PK, JM, SH, SS and MAG, this work was partly supported by the Polish–Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the framework of Project Contract Pol-Nor/197511/40/2013, CDOM-HEAT; and for AP, SH and MAG by the Research Council of Norway through the STASIS project (221961/F20). UK gratefully acknowledges financial support through the project KA 899/15-1/2/3 in the framework of the DFG (Deutsche Forschungsgemeinschaft) Priority Programme 1158 “Antarctic Research”. SS was supported by the Norwegian Financial Mechanism, project ALKEKONGE, PNRF-234-AI-1/07. We thank Oddveig Øien Ørvoll and Anders Skoglund at the Mapping section of the Norwegian Polar Institute for preparing the map of Kongsfjorden (Fig. 5.1). We thank Colin Griffiths for Kongsfjorden mooring work, funded by UK Natural Environment Research Council and the Research Council of Norway Projects Circa (214271) and Cleopatra (178766). We also thank three anonymous reviewers for constructive feedback that helped to improve this work.

References

  1. Abrahamsen MB, Browman HI, Fields DM, Skiftesvik AB (2010) The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey. Mar Biol 157:1251–1258PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aksnes DL, Dupont N, Staby A, Fiksen Ø, Kaartvedt S, Aure J (2009) Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar Ecol Prog Ser 387:39–49CrossRefGoogle Scholar
  3. Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G, Hoepffner N (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res Oceans 108(C7):3211.  https://doi.org/10.1029/2001JC000882 CrossRefGoogle Scholar
  4. Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol 39:2021–2036CrossRefGoogle Scholar
  5. Båtnes AS, Miljeteig C, Berge J, Greenacre M, Johnsen G (2015) Quantifying the light sensitivity of Calanus spp. during the polar night: potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis? Polar Biol 38:51–65CrossRefGoogle Scholar
  6. Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorenzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72CrossRefGoogle Scholar
  7. Berge J, Cottier F, Varpe Ø, Renaud PE, Falk-Petersen S, Kwasniewski S, Griffiths C, Søreide JE, Johnsen G, Aubert A, Bjærke O (2014) Arctic complexity: a case study on diel vertical migration of zooplankton. J Plankton Res 36:1279–1297PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berge J, Daase M, Renaud PE, Ambrose WG Jr, Darnis G, Last KS, Leu E, Cohen JH, Johnsen G, Moline MA, Cottier F, Varpe Ø, Shunatova N, Balazy P, Morata N, Massabuau J-C, Falk-Petersen S, Kosobokova K, Hoppe CJM, Weslawski JM, Kuklinski P, Legezynska J, Nikishina D, Cusa M, Kedra M, Wlodarska-Kowalczuk M, Vogedes D, Camus L, Tran D, Michaud E, Gabrielsen TM, Granovitch A, Gonchar A, Krapp R, Callesen TA (2015a) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561PubMedGoogle Scholar
  9. Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, Johnsen G, Seuthe L, Weslawski JM, Leu E, Moline M, Nahrgang J, Søreide JE, Varpe Ø, Lønne OJ, Daase M, Falk-Petersen S (2015b) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271CrossRefGoogle Scholar
  10. Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer PEM, Wiencke C (1998) Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–395CrossRefGoogle Scholar
  11. Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV-radiation. Plant Biol 1:435–444CrossRefGoogle Scholar
  12. Bischof K, Hanelt D, Aguilera J, Karsten U, Vögele B, Sawall T, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord: I. Sensitivity of photosynthesis to ultraviolet radiation. Mar Biol 140:1097–1106CrossRefGoogle Scholar
  13. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166.  https://doi.org/10.1007/s11157-006-0002-3 CrossRefGoogle Scholar
  14. Blachowiak-Samolyk K, Kwasniewski S, Richardson K, Dmoch K, Hansen E, Hop H, Falk-Petersen S, Mouritzen LT (2006) Arctic zooplankton do not perform diel vertical migration (DVM) during periods of midnight sun. Mar Ecol Prog Ser 308:101–116CrossRefGoogle Scholar
  15. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53CrossRefGoogle Scholar
  16. Carlsen BP, Johnsen G, Berge J, Kuklinski P (2007) Biodiversity patterns of macro-epifauna on different lamina parts of Laminaria digitata and Saccharina latissima collected during spring and summer 2004 in Kongsfjorden, Svalbard. Polar Biol 30:939–943CrossRefGoogle Scholar
  17. Chapman A, Lindley J (1980) Seasonal growth of Laminaria solidungula in the Canadian High Arctic in relation to irradiance and dissolved nutrient concentrations. Mar Biol 57:1–5CrossRefGoogle Scholar
  18. Cisewski B, Strass VH, Rhein M, Krägefsky S (2010) Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica. Deep-Sea Res I Oceanogr Res Pap 57:78–94CrossRefGoogle Scholar
  19. Cohen JH, Forward RB Jr (2009) Zooplankton diel vertical migration: a review of proximate control. Oceanogr Mar Biol 47:77–110CrossRefGoogle Scholar
  20. Cohen JH, Berge J, Moline MA, Sørensen AJ, Last K, Falk-Petersen S, Renaud PE, Leu ES, Grenvald J, Cottier F, Cronin H, Menze S, Norgren P, Varpe Ø, Daase M, Darnis G, Johnsen G (2015) Is ambient light during the High Arctic polar night sufficient to act as a visual cue for zooplankton? PLoS One 10:e0126247PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cottier FR, Tarling GA, Wold A, Falk-Petersen S (2006) Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol Oceanogr 51:2586–2599CrossRefGoogle Scholar
  22. Cottier F, Nilsen F, Inall M, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607.  https://doi.org/10.1029/2007GL029948 CrossRefGoogle Scholar
  23. Cronin HA, Cohen JH, Berge J, Johnsen G, Moline MA (2016) Bioluminescence as an ecological factor during high Arctic polar night. Sci Rep 6:36374.  https://doi.org/10.1038/srep36374 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan High Arctic. Mar Biol 106:297–304CrossRefGoogle Scholar
  25. Fischer J, Visbeck M (1993) Seasonal variation of the daily zooplankton migration in the Greenland Sea. Deep-Sea Res I Oceanogr Res Pap 40:1547–1557CrossRefGoogle Scholar
  26. Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57:203–216CrossRefGoogle Scholar
  27. Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2001) Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biol 34:995–1009CrossRefGoogle Scholar
  28. Gerland S, Renner AHH (2007) Sea-ice mass-balance monitoring in an Arctic fjord. Ann Glaciol 46:435–442CrossRefGoogle Scholar
  29. Glud RN, Kühl M, Wenzhöfer F, Rysgaard S (2002) Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production. Mar Ecol Prog Ser 238:15–29CrossRefGoogle Scholar
  30. Gómez I, Wulff A, Roleda M, Huovinen P, Karsten U, Quartino ML, Dunton K, Wiencke C (2009) Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot Mar 52:593–608CrossRefGoogle Scholar
  31. Granskog MA, Stedmon CA, Dodd PA, Amon RM, Pavlov AK, de Steur L, Hansen E (2012) Characteristics of colored dissolved organic matter (CDOM) in the Arctic outflow in the Fram Strait: assessing the changes and fate of terrigenous CDOM in the Arctic Ocean. J Geophys Res 117:C12021.  https://doi.org/10.1029/2012JC008075 CrossRefGoogle Scholar
  32. Granskog MA, Pavlov AK, Sagan S, Kowalczuk P, Raczkowska A, Stedmon CA (2015) Effect of sea-ice melt on inherent optical properties and vertical distribution of solar radiant heating in Arctic surface waters. J Geophys Res 120:7028–7039.  https://doi.org/10.1002/2015JC011087 CrossRefGoogle Scholar
  33. Ha SY, Kim YN, Park MO, Kang SH, Kim HC, Shin KH (2012) Production of mycosporine-like amino acids of in situ phytoplankton community in Kongsfjorden, Svalbard, Arctic. J Photoch Photobio B 114:1–4CrossRefGoogle Scholar
  34. Hamre B, Winther J-G, Gerland S, Stamnes JJ, Stamnes K (2004) Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard. J Geophys Res 109:C10006.  https://doi.org/10.1029/2003JC001926 CrossRefGoogle Scholar
  35. Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369CrossRefGoogle Scholar
  36. Hanelt D, Wiencke C, Nultsch W (1997) Influence of UV radiation on photosynthesis of Arctic macroalgae in the field. J Photochem Photobiol B 38:40–47CrossRefGoogle Scholar
  37. Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  38. Hanelt D, Bischof K, Wiencke C (2004) The radiation, temperature and salinity regime in Kongsfjorden. Ber Polarforsch Meeresforsch 492:14–25Google Scholar
  39. Hays GC (2003) A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503:163–170CrossRefGoogle Scholar
  40. Hegseth EN, Assmy P, Wiktor JM, Wiktor JM Jr, Kristiansen S, Leu E, Tverberg V, Gabrielsen TM, Skogseth R, Cottier F (this volume-d) Chapter 6: Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  41. Henry EC (1987) Primitive reproductive characters and a photoperiodic response in Saccorhiza dermatodea (Laminariales, Phaeophyceae). Br Phycol J 22:23–31CrossRefGoogle Scholar
  42. Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203CrossRefGoogle Scholar
  43. Hodgkins R (2001) Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrol Process 15:41–460CrossRefGoogle Scholar
  44. Holinde L, Zielinski O (2016) Bio-optical characterization and light availability parameterization in Uummannaq Fjord and Vaigat–Disko Bay (West Greenland). Ocean Sci 12:117–128CrossRefGoogle Scholar
  45. Hooper RG (1984) Functional adaptations to the polar environment by the Arctic kelp, Laminaria solidungula. Br Phycol J 19:194Google Scholar
  46. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  47. Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414CrossRefGoogle Scholar
  48. Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39:2037–2051CrossRefGoogle Scholar
  49. Hulatt CJ, Thomas DN, Bowers DG, Norman L, Zhang C (2009) Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar Coast Shelf Sci 84:147–153CrossRefGoogle Scholar
  50. Hyatt J, Visbeck M, Beardsley R, Owens W (2008) Measurements of sea ice properties using a moored upward-looking acoustic Doppler current profiler (ADCP). Deep-Sea Res II 55:351–364CrossRefGoogle Scholar
  51. Johnsen G, Volent Z, Sakshaug E, Sigernes F, Pettersson LH (2009) Remote sensing in the Barents Sea. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 139–166Google Scholar
  52. Jönsson M, Varpe Ø, Kozłowski T, Berge J, Kröger RH (2014) Differences in lens optical plasticity in two gadoid fishes meeting in the Arctic. J Comp Physiol A 200:949–957CrossRefGoogle Scholar
  53. Kaartvedt S, Melle W, Knutsen T, Skjoldal HR (1996) Vertical distribution of fish and krill beneath water of varying optical properties. Mar Ecol Prog Ser 136:51–58CrossRefGoogle Scholar
  54. Karsten U (2008) Defense strategies of algae and cyanobacteria against solar ultraviolet radiation. In: Algal chemical ecology. Springer, Heidelberg, pp 273–296CrossRefGoogle Scholar
  55. Karsten U, Bischof K, Hanelt D, Tüg H, Wiencke C (1999) The effect of ultraviolet radiation on photosynthesis and ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta). Physiol Plantarum 105:58–66CrossRefGoogle Scholar
  56. Karsten U, Schumann R, Rothe S, Jung I, Medlin L (2006) Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga. Polar Biol 29:476–486CrossRefGoogle Scholar
  57. Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2009) Physiological responses of polar benthic algae to ultraviolet radiation. Bot Mar 52:639–654CrossRefGoogle Scholar
  58. Karsten U, Schlie C, Woelfel J, Becker B (2012) Benthic diatoms in Arctic Seas-ecological functions and adaptions. Polarforschung 81:77–84Google Scholar
  59. Karsten U, Schaub I, Woelfel J, Sevilgen DS, Schlie C, Becker B, Wulff A, Graeve M, Wagner H (this volume-b) Chapter 8: Living on cold substrata – new approaches to study microphytobenthos ecophysiology and ecology in Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  60. Keats DW, South R (1985) Aspects of the reproductive phenology of Saccorhiza dermatodea (Phaeophyta, Laminariales) in Newfoundland. Br Phycol J 20:117–122CrossRefGoogle Scholar
  61. Kortsch S, Primicerio R, Beuchel F, Renaud PE, Rodrigues J, Lønne OJ, Gulliksen B (2012) Climate-driven regime shifts in Arctic marine benthos. Proc Natl Acad Sci U S A 109:14052–14057PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kosobokova KN (1978) Diurnal vertical distribution of Calanus hyperboreus Kroyer and Calanus glacialis Jaschnov in the central Polar Basin. Oceanology 18:476–480Google Scholar
  63. Kraft A, Berge J, Varpe Ø, Falk-Petersen S (2013) Feeding in Arctic darkness: mid-winter diet of the pelagic amphipods Themisto abyssorum and T. libellula. Mar Biol 160:241–248CrossRefGoogle Scholar
  64. Krüger M (2016) Photosynthese-Lichtkurven ausgewählter Makroalgenarten des Kongsfjords (Spitzbergen, Norwegen) als Grundlage für Abschätzungen der Produktivität des arktischen Kelpwaldes. Diploma thesis, Technical University of Freiberg, GermanyGoogle Scholar
  65. Kupfer H, Herber A, König-Langlo G (2006) Radiation measurements and synoptic observations at Ny Aalesund, Svalbard. Ber Polarforsch Meeresforsch 538:1–115Google Scholar
  66. Kvernvik AC, Hoppe CJM, Lawrenz E, Prasil O, Wiktor JM, Greenacre M, Leu E (2018) Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J Phycol 54:461–470PubMedCrossRefGoogle Scholar
  67. Last KS, Hobbs L, Berge J, Brierley AS, Cottier F (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:1–8CrossRefGoogle Scholar
  68. Latala A (1990) Photosynthesis and respiration of some marine benthic algae from Spitsbergen. Polar Res 8:303–307CrossRefGoogle Scholar
  69. Leu E (2006) Effects of a changing arctic light climate on the nutritional quality of phytoplankton. Dissertation, University of Oslo, Faculty of Mathematics and Natural Sciences, 194 pGoogle Scholar
  70. Leu E, Falk-Petersen S, Kwasniewski S, Wulff A, Edvardsen K, Hessen DO (2006a) Fatty acid dynamics during the spring bloom in a High Arctic fjord: importance of abiotic factors versus community changes. Can J Fish Aquat Sci 63:2760–2779CrossRefGoogle Scholar
  71. Leu E, Wängberg S-Å, Wulff A, Falk-Petersen S, Ørbæk JB, Hessen DO (2006b) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var. borealis). J Exp Mar Biol Ecol 337:65–81CrossRefGoogle Scholar
  72. Leu E, Graeve M, Wulff A (2016) A (too) bright future? – Arctic diatoms under radiation stress. Polar Biol 39:1711–1724CrossRefGoogle Scholar
  73. Lund-Hansen LC, Andersen TJ, Nielsen MH, Pejrup M (2010) Suspended matter, Chl-a, CDOM, grain sizes, and optical properties in the Arctic fjord-type estuary, Kangerlussuaq, West Greenland during summer. Estuar Coasts 33:1442–1451CrossRefGoogle Scholar
  74. Lüning K (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–398CrossRefGoogle Scholar
  75. Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Acta 104:157–162CrossRefGoogle Scholar
  76. Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471CrossRefGoogle Scholar
  77. Maturilli M, Herber A, König-Langlo G (2015) Surface radiation climatology for Ny-Ålesund, Svalbard (78.9 N), basic observations for trend detection. Theor Appl Climatol 120:331–339CrossRefGoogle Scholar
  78. Maturilli M, Hanssen-Bauer I, Neuber R, Rex M, Edvardsen K (this volume-b) Chapter 2: The atmosphere above Ny-Ålesund: climate and global warming, ozone and surface UV radiation. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  79. McCree KJ (1981) Photosynthetically active radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Springer, Berlin/New York, pp 41–55CrossRefGoogle Scholar
  80. Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic, San DiegoGoogle Scholar
  81. Morel A, Smith RC (1974) Relation between total quanta and total energy for aquatic photosynthesis. Limnol Oceanogr 19:591–600CrossRefGoogle Scholar
  82. Murray C, Markager S, Stedmon CA, Juul-Pedersen T, Sejr MK, Bruhn A (2015) The influence of glacial melt water on bio-optical properties in two contrasting Greenlandic fjords. Estuar Coast Shelf Sci 163:72–83CrossRefGoogle Scholar
  83. Paar M, Voronkov A, Hop H, Brey T, Bartsch I, Schwanitz M, Wiencke C, Lebreton B, Asmus R, Asmus H (2016) Temporal shift in biomass and production of macrozoobenthos in the macroalgal belt at Hansneset, Kongsfjorden, after 15 years. Polar Biol 39:2065–2076CrossRefGoogle Scholar
  84. Pavlov AK, Tverberg V, Ivanov BV, Nilsen F, Falk-Petersen S, Granskog MA (2013) Warming of Atlantic Water in two west Spitsbergen fjords over the last century (1912–2009). Polar Res 32:11206.  https://doi.org/10.3402/polar.v32i0.11206 CrossRefGoogle Scholar
  85. Pavlov AK, Silyakova A, Granskog MA, Bellerby RG, Engel A, Schulz KG, Brussaard CP (2014) Marine CDOM accumulation during a coastal Arctic mesocosm experiment: no response to elevated pCO levels. J Geophys Res Biogeosci 119:1216–1230.  https://doi.org/10.1002/2013JG002587 CrossRefGoogle Scholar
  86. Pavlov AK, Granskog MA, Stedmon CA, Ivanov BV, Hudson SR, Falk-Petersen S (2015) Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications. J Mar Syst 143:62–72.  https://doi.org/10.1016/j.jmarsys.2014.11.001 CrossRefGoogle Scholar
  87. Pavlov AK, Stedmon CA, Semushin AV, Martma T, Ivanov BV, Kowalczuk P, Granskog MA (2016) Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean. Cont Shelf Res 119:1–13.  https://doi.org/10.1016/j.csr.2016.03.004 CrossRefGoogle Scholar
  88. Pavlova O, Gerland S, Hop H (this volume-c) Chapter 4: Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003-2016). In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, ChamGoogle Scholar
  89. Pedersen CA, Gallet JC, Ström J, Gerland S, Hudson SR, Forsström S, Isaksson E, Berntzen TK (2015) In situ observations of black carbon in snow and the corresponding spectral surface albedo reduction. J Geophys Res Atmos 120:1476–1489CrossRefGoogle Scholar
  90. Pettersen R, Johnsen G, Berge J, Hovland EK (2011) Phytoplankton chemotaxonomy in waters around the Svalbard archipelago reveals high amounts of Chl b and presence of gyroxanthin-diester. Polar Biol 34:627–635CrossRefGoogle Scholar
  91. Piquet A-T, van de Poll W, Visser R, Wiencke C, Bolhuis H, Buma A (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279CrossRefGoogle Scholar
  92. Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl Opt 36:8710–8723PubMedCrossRefGoogle Scholar
  93. Ringelberg J (2009) Diel vertical migration of zooplankton in lakes and oceans: causal explanations and adaptive significances. Springer Science & Business Media, DordrechtGoogle Scholar
  94. Roleda MY (2016) Stress physiology and reproductive phenology of Arctic endemic kelp Laminaria solidungula J. Agardh. Polar Biol 39:1967–1978CrossRefGoogle Scholar
  95. Roleda MY, Hanelt D, Wiencke C (2006) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322PubMedCrossRefGoogle Scholar
  96. Rysgaard S, Nielsen TG (2006) Carbon cycling in a high-arctic marine ecosystem–Young Sound, NE Greenland. Prog Oceanogr 71:426–445CrossRefGoogle Scholar
  97. Sakshaug E, Johnsen G, Volent Z (2009) Light. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 117–138Google Scholar
  98. Schulz KG, Bellerby RGJ, Brussaard CPD, Budenbender J, Czerny J, Engel A, Fischer M, Koch-Klavsen S, Krug SA, Lischka S, Ludwig A, Meyerhofer M, Nondal G, Silyakova A, Stuhr A, Riebesell U (2013) Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 10:161–180.  https://doi.org/10.5194/bg-10-161-2013 CrossRefGoogle Scholar
  99. Sevilgen DS, de Beer D, Al-Handal A, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42CrossRefGoogle Scholar
  100. Sharp G, Allard M, Lewis A, Semple R, Rochefort G (2008) The potential for seaweed resource development in subarctic Canada; Nunavik, Ungava Bay. J Appl Phycol 20:491–498CrossRefGoogle Scholar
  101. Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163Google Scholar
  102. Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331:450–453PubMedPubMedCentralCrossRefGoogle Scholar
  103. Stedmon C, Markager S (2001) The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: an algorithm for differentiation between marine and terrestrially derived organic matter. Limnol Oceanogr 46:2087–2093CrossRefGoogle Scholar
  104. Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar Chem 124:108–118CrossRefGoogle Scholar
  105. Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  106. Taskjelle T, Hudson SR, Granskog MA, Nicolaus M, Lei R, Gerland S, Stamnes JJ, Hamre B (2016) Spectral albedo and transmittance of thin young Arctic Sea ice. J Geophys Res 121:540–553.  https://doi.org/10.1002/2015JC011254 CrossRefGoogle Scholar
  107. Tassan S, Ferrari G (2002) A sensitivity analysis of the ‘Transmittance–Reflectance’ method for measuring light absorption by aquatic particles. J Plankton Res 24:757–774CrossRefGoogle Scholar
  108. tom Dieck I (1989) Vergleichende Untersuchungen zur Ökophysiologie und Kreuzbarkeit innerhalb der digitaten Sektion der Gattung Laminaria. PhD thesis, University of Hamburg, Hamburg, GermanyGoogle Scholar
  109. tom Dieck I (1991) Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). J Phycol 27:341–350CrossRefGoogle Scholar
  110. Torgersen T (2001) Visual predation by the euphausiid Meganyctiphanes norvegica. Mar Ecol Prog Ser 209:295–299CrossRefGoogle Scholar
  111. Urbanski JA, Stempniewicz L, Weslawski JM, Draganska-Deja K, Wochna A, Goc M, Iliszko L (2017) Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacial bays. Sci Rep 7:43999.  https://doi.org/10.1038/srep43999 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Vader A, Marquardt M, Meshram AR, Gabrielsen TM (2015) Key Arctic phototrophs are widespread in the polar night. Polar Biol 38:13–21CrossRefGoogle Scholar
  113. van de Poll WH, Hanelt D, Hoyer K, Buma AGJ, Breeman AM (2002) Ultraviolet-B induced cyclobutane pyrimidine dimer formation and repair in Arctic marine macrophytes. Photochem Photobiol 76:493–501PubMedCrossRefGoogle Scholar
  114. Varpe Ø (2012) Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. J Plankton Res 34:267–276CrossRefGoogle Scholar
  115. Varpe Ø, Daase M, Kristiansen T (2015) A fish-eye view on the new Arctic lightscape. ICES J Mar Sci 72:2532–2538CrossRefGoogle Scholar
  116. Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environ Rev 1:1–12CrossRefGoogle Scholar
  117. Volent Z, Johnsen G, Sigernes F (2007) Kelp forest mapping by use of airborne hyperspectral imager. J Appl Remote Sens 1:011503.  https://doi.org/10.1117/1.2822611 CrossRefGoogle Scholar
  118. Wallace MI, Cottier FR, Berge J, Tarling GA, Griffiths C, Brierley AS (2010) Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behavior. Limnol Oceanogr 55:831–845CrossRefGoogle Scholar
  119. Wängberg S-Å, Andreasson KI, Gustavson K, Reinthaler T, Henriksen P (2008) UV-B effects on microplankton communities in Kongsfjord, Svalbard–A mesocosm experiment. J Exp Mar Biol Ecol 365:156–163CrossRefGoogle Scholar
  120. Wiencke C, Hop H (2016) Ecosystem Kongsfjorden: new views after more than a decade of research. Polar Biol 39:1679–1687CrossRefGoogle Scholar
  121. Wiencke C, Gómez I, Pakker H, Flores-Moya A, Altamirano M, Hanelt D, Bischof K, Figueroa FL (2000) Impact of UV-radiation on viability, photosynthetic characteristics and DNA of brown algal zoospores: implications for depth zonation. Mar Ecol Prog Ser 197:217–229CrossRefGoogle Scholar
  122. Wiencke C, Clayton M, Schoenwaelder M (2004) Sensitivity and acclimation to UV radiation of zoospores from five species of Laminariales from the Arctic. Mar Biol 145:31–39CrossRefGoogle Scholar
  123. Wiencke C, Roleda MY, Gruber A, Clayton MN, Bischof K (2006) Susceptibility of zoospores to UV radiation determines upper depth distribution limit of Arctic kelps: evidence through field experiments. J Ecol 94:455–463CrossRefGoogle Scholar
  124. Winther J-G, Edvardsen K, Gerland S, Hamre B (2004) Surface reflectance of sea ice and under-ice irradiance in Kongsfjorden, Svalbard. Polar Res 23:115–118CrossRefGoogle Scholar
  125. Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253CrossRefGoogle Scholar
  126. Woelfel J, Eggert A, Karsten U (2014) Marginal impacts of rising temperature on Arctic benthic microalgae production based on in situ measurements and modelled estimates. Mar Ecol Prog Ser 501:25–40CrossRefGoogle Scholar
  127. Zajaczkowski MJ, Legezynska J (2001) Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey K. Pavlov
    • 1
    • 2
    • 3
  • Eva Leu
    • 3
  • Dieter Hanelt
    • 4
  • Inka Bartsch
    • 5
  • Ulf Karsten
    • 6
  • Stephen R. Hudson
    • 1
  • Jean-Charles Gallet
    • 1
  • Finlo Cottier
    • 7
    • 8
  • Jonathan H. Cohen
    • 9
  • Jørgen Berge
    • 10
    • 11
    • 12
  • Geir Johnsen
    • 11
    • 13
  • Marion Maturilli
    • 14
  • Piotr Kowalczuk
    • 2
  • Sławomir Sagan
    • 2
  • Justyna Meler
    • 2
  • Mats A. Granskog
    • 1
  1. 1.Norwegian Polar Institute, Fram CentreTromsøNorway
  2. 2.Institute of Oceanology, Polish Academy of SciencesSopotPoland
  3. 3.Akvaplan-niva A/S, Fram CentreTromsøNorway
  4. 4.Aquatic Ecophysiology and PhycologyUniversity of HamburgHamburgGermany
  5. 5.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  6. 6.Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockRostockGermany
  7. 7.Scottish Association for Marine ScienceScottish Oceans InstituteObanUK
  8. 8.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  9. 9.School of Marine Science and Policy, University of DelawareDelawareUSA
  10. 10.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
  11. 11.The University Centre in SvalbardLongyearbyenNorway
  12. 12.Centre for Autonomous Marine Operations and SystemsDepartment of Biology, Norwegian University of Science and TechnologyTrondheimNorway
  13. 13.Department of Biology and Marine TechnologyNorwegian University of Science and TechnologyTrondheimNorway
  14. 14.Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchPotsdamGermany

Personalised recommendations