Skip to main content

Crystal Nucleation of Small Organic Molecules

  • Chapter
  • First Online:
New Perspectives on Mineral Nucleation and Growth

Abstract

The crystal nucleation of small organic molecules from solution is reviewed from a theoretical viewpoint of the classical nucleation theory. In experiments heterogeneous nucleation is occurring which, due to the lack of information on the foreign particles onto which nucleation takes place, hampers the molecular interpretation of nucleation rate data. Due to the various nucleation rate measurement methods, analytical techniques, and simulation methods now available, crystal nucleation research will show substantial progress in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aaltonen J, Allesø M, Mirza S, Koradia V, Gordon KC, Rantanen J (2009) Solid form screening–a review. Eur J Pharm Biopharm 71:23–37

    Article  Google Scholar 

  • Andreassen J-P, Lewis AE (2017) Classical and non-classical theories of crystal growth. In: Benning Liane G, Gebauer D, Kellermeier M, Van Driessche Alexander ES (eds) New perspectives on mineral nucleation and growth. Springer, Cham, pp 137–154

    Google Scholar 

  • Anwar J, Zahn D (2011) Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew Chem Int Ed 50:1996–2013

    Article  Google Scholar 

  • Bernardes CE, Ilharco LM, Da Piedade MEM (2014a) Polymorphism in 4′-hydroxyacetophenone: a vibrational analysis. J Mol Struct 1078:181–187

    Article  Google Scholar 

  • Bernardes CE, Lopes MLM, Ascenso JR, Da Piedade MEM (2014b) From molecules to crystals: the solvent plays an active role throughout the nucleation pathway of molecular organic crystals. Cryst Growth Des 14:5436–5441

    Article  Google Scholar 

  • Brandel C, ter Horst JH (2015) Measuring induction times and crystal nucleation rates. Faraday Discuss 179:199–214

    Article  Google Scholar 

  • Bučar D-K, Lancaster RW, Bernstein J (2015) Disappearing polymorphs revisited. Angew Chem Int Ed 54:6972–6993

    Article  Google Scholar 

  • Chattopadhyay S, Erdemir D, Evans JM, Ilavsky J, Amenitsch H, Segre CU, Myerson AS (2005) SAXS study of the nucleation of glycine crystals from a supersaturated solution. Cryst Growth Des 5:523–527

    Article  Google Scholar 

  • Chen J, Sarma B, Evans JMB, Myerson AS (2011) Pharmaceutical crystallization. Cryst Growth Des 11:887–895

    Article  Google Scholar 

  • Davey R, Dent G, Mughal R, Parveen S (2006) Concerning the relationship between structural and growth synthons in crystal nucleation: solution and crystal chemistry of carboxylic acids as revealed through IR spectroscopy. Cryst Growth Des 6:1788–1796

    Article  Google Scholar 

  • Davey RJ, Schroeder SL, Ter Horst JH (2013) Nucleation of organic crystals—a molecular perspective. Angew Chem Int Ed 52:2166–2179

    Article  Google Scholar 

  • Davey RJ, Back K, Sullivan R (2015) FD crystal nucleation from solutions–transition states, rate determining steps and complexity. Faraday Discuss 179:9–26

    Article  Google Scholar 

  • De Yoreo JJ, Sommerdijk N, Patricia D (2017) Nucleation pathways in electrolyte solutions. In: Benning Liane G, Gebauer D, Kellermeier M, Van Driessche Alexander ES (eds) New perspectives on mineral nucleation and growth. Springer, Cham, pp 1–24

    Chapter  Google Scholar 

  • Deij MA, Ter Horst JH, Meekes H, Jansens P, Vlieg E (2007) Polymorph formation studied by 3D nucleation simulations: application to a yellow isoxazolone dye, paracetamol, and L-glutamic acid. J Phys Chem B 111:1523–1530

    Article  Google Scholar 

  • Dunning W, Shipman A (1954) Nucleation in sucrose solutions. ro Congr Intern Ind Agr Madrid 2:1448

    Google Scholar 

  • Forsyth C, Mulheran PA, Forsyth C, Haw MD, Burns IS, Sefcik J (2014) Influence of controlled fluid shear on nucleation rates in glycine aqueous solutions. Cryst Growth Des 15:94–102

    Article  Google Scholar 

  • Galkin O, Vekilov PG (1999) Direct determination of the nucleation rates of protein crystals. J Phys Chem B 103:10965–10971

    Article  Google Scholar 

  • Gebauer D, Cölfen H (2011) Prenucleation clusters and non-classical nucleation. Nano Today 6:564–584

    Article  Google Scholar 

  • Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371

    Article  Google Scholar 

  • Hunter CA, Mccabe JF, Spitaleri A (2012) Solvent effects of the structures of prenucleation aggregates of carbamazepine. CrystEngComm 14:7115–7117

    Article  Google Scholar 

  • Ildefonso M, Candoni N, Veesler S (2011) Using microfluidics for fast, accurate measurement of lysozyme nucleation kinetics. Cryst Growth Des 11:1527–1530

    Article  Google Scholar 

  • Ismail SZ, Anderton CL, Copley RC, Price LS, Price SL (2013) Evaluating a crystal energy landscape in the context of industrial polymorph screening. Cryst Growth Des 13:2396–2406

    Article  Google Scholar 

  • Jawor-Baczynska A, Sefcik J, Moore BD (2013) 250 nm glycine-rich nanodroplets are formed on dissolution of glycine crystals but are too small to provide productive nucleation sites. Cryst Growth Des 13:470–478

    Article  Google Scholar 

  • Jiang S, Ter Horst JH (2010) Crystal nucleation rates from probability distributions of induction times. Cryst Growth Des 11:256–261

    Article  Google Scholar 

  • Kadam SS, Kulkarni SA, Coloma Ribera R, Stankiewicz AI, Ter Horst JH, Kramer HJ (2012) A new view on the metastable zone width during cooling crystallization. Chem Eng Sci 72:10–19

    Article  Google Scholar 

  • Kashchiev D (2000) Nucleation: basic theory with applications. Butterworth-Heinemann, Boston

    Google Scholar 

  • Kim JW, Kim J, Lee KD, Koo KK (2013) Evaluation of nucleation rate by in‐situ focused beam reflectance measurement in an unseeded batch cooling crystallization. Cryst Res Technol 48:1097–1105

    Article  Google Scholar 

  • Kitamura M, Horimoto K (2013) Role of kinetic process in the solvent effect on crystallization of BPT propyl ester polymorph. J Cryst Growth 373:151–155

    Article  Google Scholar 

  • Kitamura M, Umeda E, Miki K (2012) Mechanism of solvent effect in polymorphic crystallization of BPT. Ind Eng Chem Res 51:12814–12820

    Article  Google Scholar 

  • Kulkarni SA, Mcgarrity E, Meekes H, Ter Horst JH (2012) Isonicotinamide self-association: the link between solvent and polymorph nucleation. Chem Commun 48:4983–4985

    Article  Google Scholar 

  • Kulkarni SA, Kadam SS, Meekes H, Stankiewicz AI, Ter Horst JH (2013) Crystal nucleation kinetics from induction times and metastable zone widths. Cryst Growth Des 13:2435–2440

    Article  Google Scholar 

  • Kulkarni SA, Weber CC, Myerson AS, Ter Horst JH (2014) Self-association during heterogeneous nucleation onto well-defined templates. Langmuir 30:12368–12375

    Article  Google Scholar 

  • Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni X-W (2009) Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 13:1357–1363

    Article  Google Scholar 

  • Lee IS, Lee AY, Myerson AS (2008) Concomitant polymorphism in confined environment. Pharm Res 25:960–968

    Article  Google Scholar 

  • Lutsko JF (2017) Novel paradigms in non-classical nucleation theory. In: Benning Liane G, Gebauer D, Kellermeier M, Van Driessche Alexander ES (eds) New perspectives on mineral nucleation and growth. Springer, Cham, pp 25–42

    Chapter  Google Scholar 

  • Mullin JW (2001) Crystallization. Butterworth-Heinemann, Boston

    Google Scholar 

  • Nanev CN, Hodzhaoglu FV, Dimitrov IL (2010) Kinetics of insulin crystal nucleation, energy barrier, and nucleus size. Cryst Growth Des 11:196–202

    Article  Google Scholar 

  • Nielsen MH, De Yoreo JJ (2017) Liquid phase TEM investigations of crystal nucleation, growth and transformation. In: Benning Liane G, Gebauer D, Kellermeier M, Van Driessche Alexander ES (eds) New perspectives on mineral nucleation and growth. Springer, Cham, pp 353–374

    Google Scholar 

  • Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    Article  Google Scholar 

  • Sullivan R, Davey R, Sadiq G, Dent G, Back K, Ter Horst J, Toroz D, Hammond R (2014) Revealing the roles of desolvation and molecular self-assembly in crystal nucleation from solution: benzoic and p-aminobenzoic acids. Cryst Growth Des 14:2689–2696

    Article  Google Scholar 

  • Ten Wolde PR, Frenkel D (1997) Enhancement of protein crystal nucleation by critical density fluctuations. Science 277:1975–1978

    Article  Google Scholar 

  • Ter Horst JH, Kashchiev D (2003) Determination of the nucleus size from the growth probability of clusters. J Chem Phys 119:2241–2246

    Article  Google Scholar 

  • Ter Horst J, Kramer H, Jansens P (2002) A new molecular modeling approach to predict concomitant nucleation of polymorphs. Cryst Growth Des 2:351–356

    Article  Google Scholar 

  • Ter Horst JH, Schmidt C, Ulrich J (2015) Fundamentals of industrial crystallization. In: Rudolph P (ed) Handbook of crystal growth, 2nd edn. Elsevier, Boston

    Google Scholar 

  • Thomason MJ, Seabourne C, Sattelle BM, Hembury GA, Stevens J, Scott A, Aziz EF, Schroeder SL (2015) Self-association of organic solutes in solution: a NEXAFS study of aqueous imidazole. Faraday Discuss 179:269–289

    Article  Google Scholar 

  • Van Driessche Alexander ES, Stawski Tomasz M, Benning Liane G, Kellermeier M (2017) Calcium sulfate precipitation throughout its phase diagram. In: Benning Liane G, Gebauer D, Kellermeier M, Van Driessche Alexander ES (eds) New perspectives on mineral nucleation and growth. Springer, Cham, pp 227–256

    Chapter  Google Scholar 

  • Vekilov PG (2004) Dense liquid precursor for the nucleation of ordered solid phases from solution. Cryst Growth Des 4:671–685

    Article  Google Scholar 

  • Vekilov PG (2005) Two-step mechanism for the nucleation of crystals from solution. J Cryst Growth 275:65–76

    Article  Google Scholar 

  • Vekilov PG (2010) The two-step mechanism of nucleation of crystals in solution. Nanoscale 2:2346–2357

    Article  Google Scholar 

  • Wedekind J, Strey R, Reguera D (2007) New method to analyze simulations of activated processes. J Chem Phys 126:134103

    Article  Google Scholar 

  • Yang HY, Rasmuson AC (2013) Nucleation of butyl paraben in different solvents. Cryst Growth Des 13:4226–4238

    Article  Google Scholar 

  • Yang HY, Svard M, Zeglinski J, Rasmuson AC (2014) Influence of solvent and solid-state structure on nucleation of parabens. Cryst Growth Des 14:3890–3902

    Article  Google Scholar 

  • Yuhara D, Barnes BC, Suh D, Knott BC, Beckham GT, Yasuoka K, Wu DT, Sum AK (2015) Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Faraday Discuss 179:463–474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joop H. ter Horst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, H., ter Horst, J.H. (2017). Crystal Nucleation of Small Organic Molecules. In: Van Driessche, A., Kellermeier, M., Benning, L., Gebauer, D. (eds) New Perspectives on Mineral Nucleation and Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-45669-0_16

Download citation

Publish with us

Policies and ethics