A Fault-Tolerant Authenticated Key-Conference Agreement Protocol with Forward Secrecy

  • Tomasz HylaEmail author
  • Jerzy Pejaś
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9842)


In conference channels, users communicate with each other using a conference key that is used to encrypt messages. There are two basic approaches in which the key can be established. In the first one, a central server is used (with a chairman role). The server generates the key and distributes it to participants. The second approach is that all participants compute a key without a chairman. In this paper, we introduce a special type of group authentication using secret sharing, which provides an efficient way to authenticate multiple users belonging to the same group without the chairman. Our proposed protocol is a many-to-many type of authentication. Unlike most user authentication protocols that authenticate a single user each time, our proposed protocol authenticates all users of a group at once.


User authentication Conference-key agreement Group communication Forward secrecy Fault tolerance 


  1. 1.
    Tzeng, W.G.: A secure fault-tolerant conference-key agreement protocol. IEEE Trans. Comput. 51(4), 373–379 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ermiş, O., Bahtityar, S., Anarim, E., Çağlayan, M.U.: An improved conference-key agreement protocol for dynamic groups with efficient fault correction. Secur. Commun. Netw. 8(7), 1347–1359 (2015)CrossRefGoogle Scholar
  3. 3.
    Tseng, Y.M.: A communication-efficient and fault-tolerant conference-key agreement protocol with forward secrecy. J. Syst. Softw. 80(7), 1091–1101 (2007)CrossRefGoogle Scholar
  4. 4.
    Rhee, K.H., Park, Y.H., Tsudik, G.: An architecture for key management in hierarchical mobile ad-hoc networks. J. Commun. Netw. 6(2), 1–7 (2004)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    ANSI X9.63: Public key cryptography for the financial services industry: key agreement and key transport using Elliptic Curve cryptography. ANSI (2001)Google Scholar
  7. 7.
    Tseng, Y.M.: A robust multi-party key agreement protocol resistant to malicious participants. Comput. J. 48(4), 480–487 (2005)CrossRefGoogle Scholar
  8. 8.
    Katz, J., Shin, J.S.: Modelling insider attacks on group key exchange protocols. In: ACM Conference on Computer and Communications Security, pp. 180–189 (2005)Google Scholar
  9. 9.
    Tang, Q., Mitchell, C.J.: Security properties of two authenticated conference key agreement protocols. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 304–314. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Chung, Y.F.: The design of authentication key protocol in certificate-free public key cryptosystem. Secur. Commun. Netw. 7(11), 2125–2133 (2013)CrossRefGoogle Scholar
  11. 11.
    Cheng, Z.Y., Liu, Y., Chang, C.C., Guo, C.: A fault-tolerant group key agreement protocol exploiting dynamic setting. Int. J. Commun. Syst. 26(2), 259–275 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhao, J., Gu, D., Li, Y.: An efficient fault-tolerant group key agreement protocol. Comput. Commun. 33, 890–895 (2010)CrossRefGoogle Scholar
  13. 13.
    Huang, K.H., Chung, Y.F., Lee, H.H., Lai, F., Chen, T.S.: A conference key agreement protocol with fault-tolerant capability. Comput. Stand. Interfaces 31(2), 401–405 (2009)CrossRefGoogle Scholar
  14. 14.
    Wu, Q., Mu, Y., Susilo, W., Qin, B., Domingo-Ferrer, J.: Asymmetric group key agreement. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 153–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, Z.: Improvement on the fault-tolerant group key agreement protocol of Zhao et al. Sec. Commun. Netw. 9(2), 166–170 (2016)CrossRefGoogle Scholar
  16. 16.
    Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J. Cryptol. 20(1), 85–113 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tseng, Y.M.: An improved conference-key agreement protocol with forward secrecy. Informatica 16, 275–284 (2005). Lithuania Academy of SciencesMathSciNetzbMATHGoogle Scholar
  18. 18.
    Ryabko, B., Fionov, A.: Basics of Contemporary Cryptography for IT Practioners. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)zbMATHCrossRefGoogle Scholar
  19. 19.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols. Chapman and Hall/CRC, Boca Raton (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Chatterjee, S., Kamath, C., Kumar, V.: Galindo-Garcia identity-based signature revisited. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 456–471. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Chatterjee, S., Kamath, Ch.: A closer look at multiple forking: leveraging (in)dependence for a tighter bound. Algorithmica 74(4), 1–42 (2015)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lee, C.C., Li, C.T., Wu, C.Y., Huang, S.Y.: An enhanced fault-tolerant conference key agreement protocol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 8(12), 2231–2235 (2014)Google Scholar
  23. 23.
    El Fray, I., Hyla, T., Kurkowski, M., Maćków, W., Pejaś, J.: Practical authentication protocols for protecting and sharing sensitive information on mobile devices. In: Kotulski, Z., Księżopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp. 153–165. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    El Fray, I., Hyla, T., Chocianowicz, W.: Protection profile for secure sensitive information system on mobile devices. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 636–650. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Hyla, T., Pejaś, J.: Certificate-based encryption scheme with general access structure. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 41–55. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Hyla, T., Pejaś, J.: A practical certificate and identity based encryption scheme and related security architecture. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 190–205. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Hyla, T., Maćków, W., Pejaś, J.: Implicit and explicit certificates-based encryption scheme. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 651–666. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  28. 28.
    IEEE Standard 1363.3 – 2013 – IEEE Standard for Identity-Based Cryptographic Techniques Using Pairings (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations