Robust Tabu Search Algorithm for Planning Rail-Truck Intermodal Freight Transport

  • Wojciech Bożejko
  • Radoslaw GryminEmail author
  • Szymon Jagiełło
  • Jarosław Pempera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9842)


In this paper a new efficient tabu search algorithm for assigning freight to the intermodal transport connections was developed. There were also formulated properties of the problem that can be used to design robust heuristic algorithms based on the local search methods. The quality of solutions produced by the tabu search algorithm and by often recommended greedy approach were also compared.


Intermodal transport Optimization Tabu search 


  1. 1.
    Bożejko, W.: Parallel path relinking method for the single machine total weighted tardiness problem with sequence-dependent setups. J. Intell. Manuf. 21, 777–785 (2010)CrossRefGoogle Scholar
  2. 2.
    Bożejko, W.: On single-walk parallelization of the job shop problem solving algorithms. Comput. Oper. Res. 39, 2258–2264 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bożejko, W., Makuchowski, M.: A fast hybrid tabu search algorithm for the no-wait job shop problem. Comput. Ind. Eng. 56, 1502–1509 (2009)CrossRefGoogle Scholar
  4. 4.
    Bożejko, W., Pempera, J., Smutnicki, C.: Parallel tabu search algorithm for the hybrid flow shop problem. Comput. Ind. Eng. 65, 466–474 (2013)CrossRefGoogle Scholar
  5. 5.
    Bożejko, W., Uchroński, M., Wodecki, M.: The new golf neighborhood for the flexible job shop problem. In: Proceedings of the ICCS 2010, Procedia Computer Science, vol. 1, pp. 289–296 (2009)CrossRefGoogle Scholar
  6. 6.
    Bontekoning, Y., Macharis, C., Trip, J.: Is a new applied transportation research field emerging?—A review of intermodal rail-truck freight transport literature. Transp. Res. Part A: Policy Pract. 38(1), 1–34 (2004)CrossRefGoogle Scholar
  7. 7.
    Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29, 641–662 (2003)CrossRefGoogle Scholar
  8. 8.
    Bożejko, W., Wodecki, M.: Parallel genetic algorithm for the flow shop scheduling problem. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 566–571. Springer, Heidelberg (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bożejko, W., Wodecki, M.: Solving permutational routing problems by population-based metaheuristics. Comput. Ind. Eng. 57(1), 269–276 (2009)CrossRefGoogle Scholar
  10. 10.
    Caris, A., Janssens, G.K.: A local search heuristic for the pre- and end-haulage of intermodal container terminals. Comput. Oper. Res. 36(10), 2763–2772 (2009)zbMATHCrossRefGoogle Scholar
  11. 11.
    Caris, A., Macharis, C., Janssens, G.K.: Decision support in intermodal transport: a new research agenda. Comput. Ind. 64(2), 105–112 (2013)CrossRefGoogle Scholar
  12. 12.
    Di Febbraro, A., Sacco, N., Saeednia, M.: An agent-based framework for cooperative planning of intermodal freight transport chains. Transp. Res. Part C: Emerg. Technol. 64, 72–85 (2016)CrossRefGoogle Scholar
  13. 13.
    Glover, F.: Tabu search part I. ORSA J. Comput. 2, 190–206 (1989)zbMATHCrossRefGoogle Scholar
  14. 14.
    Glover, F.: Tabu search part I. ORSA J. Comput. 2, 4–32 (1990)zbMATHCrossRefGoogle Scholar
  15. 15.
    Hanssen, T.E.S., Mathisen, T.A., Jørgensen, F.: Generalized transport costs in intermodal freight transport. Procedia-Soc. Behav. Sci. 54, 189–200 (2012)CrossRefGoogle Scholar
  16. 16.
    Kelleher, G., El-Rhalibi, A., Arshad, F.: Scheduling for intermodal transport. Logist. Inf. Manage. 16(5), 363–372 (2003)CrossRefGoogle Scholar
  17. 17.
    Leung, S.C., Zhou, X., Zhang, D., Zheng, J.: Extended guided tabu search and a new packing algorithm for the two-dimensional loading vehicle routing problem. Comput. Oper. Res. 38, 205–215 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Macharis, C., Bontekoning, Y.M.: Opportunities for or in intermodal freight transport research: a review. Eur. J. Oper. Res. 153(2), 400–416 (2004)zbMATHCrossRefGoogle Scholar
  19. 19.
    Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Manage. Sci. 42(6), 797–813 (1996)zbMATHCrossRefGoogle Scholar
  20. 20.
    Renaud, J., Laporte, G., Boctor, F.F.: A tabu search heuristic for the multi-depot vehicle routing problem. Comput. Oper. Res. 23(3), 229–235 (1996)zbMATHCrossRefGoogle Scholar
  21. 21.
    Rizzoli, A.E., Fornara, N., Gambardella, L.M.: A simulation tool for combined rail/road transport in intermodal terminals. Math. Comput. Simul. 59(1), 57–71 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Smutnicki, C., Pempera, J., Rudy, J., Żelazny, D.: A new approach for multi-criteria scheduling. Comput. Ind. Eng. 90, 212–220 (2015)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Wojciech Bożejko
    • 1
  • Radoslaw Grymin
    • 1
    Email author
  • Szymon Jagiełło
    • 1
  • Jarosław Pempera
    • 1
  1. 1.Department of Control Systems and MechatronicsWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations