Biological Aspects

  • Gérard M. ScortecciEmail author
  • Pierre Doglioli
  • Patrick Philip
  • Itzhak Binderman


Decades of continuous clinical use have proven titanium to be a biocompatible material for implants destined to remain in the human body. Surface state, asepsis, gentle handling of the hard and soft tissues, primary stability, and numerous biological and mechanical parameters all contribute to the long-term success of basal implantology. The titanium basal implants used in the studies described hereafter all featured a non-modified, ad modum Brånemark surface which is associated with a low incidence of peri-implantitis. In contrast, this complication has been widely described around implants with the more recent and, for a time, very popular modified (rough) surfaces.


Titanium properties Fundamental research Surface characteristics Specific biocompatibility Osteotomy speed Peri-implantitis 


Conflict of interest statement

Gérard M. Scortecci is the inventor of the Diskimplant and holder of several associated patents that are exploited by the Victory company. He is an unpaid consultant to this firm and a minority shareholder in the company. No money was received from any of the companies mentioned in the book or from any of the companies whose products are mentioned.

Recommended Reading

  1. 1.
    Jordana F, Susbielles L, Colat-Parros J. Periimplantitis and implant body roughness: a systematic review of literature. Implant Dent. 2018;27(6):672–81.CrossRefGoogle Scholar
  2. 2.
    Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT. Prosthetic metals interfere with the functions of human osteoblast cells in vitro. Clin Orthop Relat Res. 1997;339:216–26.CrossRefGoogle Scholar
  3. 3.
    Yao J, Szabo GCS, Jacobs JJ, Kuettner KE, Glant TT. Suppression of osteoblast function by titanium particles. J Bone Joint Surg. 1997;1:229–31.Google Scholar
  4. 4.
    Resnik RR, Misch CE. Avoiding complications in oral implantology. St. Louis, MO: Elsevier; 2017. p. 784–91.Google Scholar
  5. 5.
    Doglioli P, Scortecci G. Characterization of endosteal osteoblasts isolated from human maxilla and mandible: an experimental system for biocompatibility tests. Cytotechnology. 1991;7:39–48.CrossRefGoogle Scholar
  6. 6.
    Scortecci GM. The Diskimplant: a self-positioning pure titanium implant. Proceedings of the 7th World Congress of Oral Implantology, Munich, FRG (June); 1984.Google Scholar
  7. 7.
    Scortecci G. L’implant Dentaire Tricortical. PhD thesis, University of Aix-Marseilles, France; 1988.Google Scholar
  8. 8.
    Scortecci GM. Etude comparative de l’échauffement lors du fraisage de l’os. Ind Dent. 1988;21:34–7.Google Scholar
  9. 9.
    Ihde S. Principles of BOI. Clinical, scientific, and practical guidelines to 4-D dental implantology. Heidelberg: Springer; 2005.Google Scholar
  10. 10.
    Albrektsson T. Bone tissue response. Tissue integrated prostheses. London: Mosby; 1985. p. 1361.Google Scholar
  11. 11.
    Eriksson RA, Albrektsson T. The effect of heat on bone regeneration. An experimental study. J Oral Maxillofac Surg. 1984;42:701–11.CrossRefGoogle Scholar
  12. 12.
    Eriksson RA, Albrektsson T. Thermal injury to bone. A vital microscopic description of heat effects. Int J Oral Surg. 1982;11:115.CrossRefGoogle Scholar
  13. 13.
    Peyton FA. Effectiveness of water coolants with rotary cutting instruments. J Am Dent Assoc. 1958;56(5):664–75.CrossRefGoogle Scholar
  14. 14.
    Scortecci G, Zattara H, Meyere P, Doms P. Diskimplant System: intraoral applications in small bone values. Patient selection and long-term results. In: Laney W, Tolman D, editors. Tissue integration in oral, orthopedic and maxillofacial reconstruction. Chicago: Quintessence; 1990. p. 350–5.Google Scholar
  15. 15.
    Scortecci GM, Misch CE, Benner KU, editors. Implants and restorative dentistry. London: Martin Dunitz; 2001.Google Scholar
  16. 16.
    Lyer S, Weiss C, Mehta A. Effects of drill speed on heat production and quality of bone formation in dental implant osteotomies. Part I: Relationship between drill speed and heat production. Int J Prosthodont. 1997;10(5):411–5.Google Scholar
  17. 17.
    Lyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part II: relationship between drill speed and healing. Int J Prosthodont. 1997;10(6):536–40.Google Scholar
  18. 18.
    Scortecci GM, Doms P. Le Diskimplant. Actual Odontostom. 1987;159:521–38.Google Scholar
  19. 19.
    Albrektsson T. Brånemark System Info. 1999;5(1).Google Scholar
  20. 20.
    Albrektsson T. A nuanced perspective on peri-implantitis. Implant. 2016;17, 2/2016.Google Scholar
  21. 21.
    Baldi D, Menini M, Pera F, Ravera G, Pera P. Plaque accumulation on exposed titanium surfaces and peri-implant tissue behavior. A preliminary 1-year clinical study. Int J Prosthodont. 2009;22(5):447–55.PubMedGoogle Scholar
  22. 22.
    de Waal YC, Eijsbouts HV, Winkel EG, van Winkelhoff AJ. Microbial characteristics of peri-implantitis: a case-control study. J Periodontol. 2016;26:1–13.Google Scholar
  23. 23.
    Esposito M, Ardebili Y, Worthington HV. Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev. 2014;22(7):CD003815.Google Scholar
  24. 24.
    Itic J, Bessade J. Réflexions sur les péri-implantites. Alpha Omega News. 2016:28–29.Google Scholar
  25. 25.
    Ivanoff CJ, Sennerby L, Lekholm U. Influence of mono- and bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg. 1996;25:229–35.CrossRefGoogle Scholar
  26. 26.
    Jaffin RA, Berman CL. The excessive loss of Brånemark fixtures in Type IV bone; a 5-year analysis. J Periodontol. 1991;62:2–4.CrossRefGoogle Scholar
  27. 27.
    Juillet JM. Three-dimensional implants – development and evaluation. Oral Implantol. 1974;4:101–4.Google Scholar
  28. 28.
    Kasemo B. Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent. 1983;49:832.CrossRefGoogle Scholar
  29. 29.
    Lekholm U. Cortical stabilization. In: Lindhe J, editor. Clinical periodontology and implant dentistry. Copenhagen: Munksgaard; 1998. p. 892–902.Google Scholar
  30. 30.
    Michel MC, Veyret D, Pantaloni J, Martin R. Analyse comparative par éléments finis d’implants odontologiques avec et sans appui cortical. Le Chirurgien-Dentiste de France. 1990;510:83–9.Google Scholar
  31. 31.
    National Institute of Health Consensus Development Conference statement on dental implants. Bethesda, MD: NIH; 1988.Google Scholar
  32. 32.
    Peixoto CD, Almas K. The implant surface characteristics and peri-implantitis. An evidence-based update. Odontostomatol Trop. 2016;39(153):23–35.PubMedGoogle Scholar
  33. 33.
    Rodriguez Y, Baena R, Arciola CR, Selan L, Battaglia R, Imbriani M, Rizzo S, Bisai L. Evaluation of bacterial adhesion on machined titanium, Osseotite and Nanotite discs. Int J Artif Organs. 2012;35(10):754–61. Scholar
  34. 34.
    Schroeder A, van de Zypen E, Stich H, Sutter F. The reactions of bone, connective tissues and epithelium to endosteal implants with titanium plasma-sprayed surfaces. J Maxillofac Surg. 1981;9:15–25.CrossRefGoogle Scholar
  35. 35.
    Scortecci GM. Immediate function of cortically anchored disk-design implants without bone augmentation in moderately to severely resorbed completely edentulous maxillae. J Oral Implantol. 1999;25(2):70–9.CrossRefGoogle Scholar
  36. 36.
    Scortecci G, Modschiedler T. Ostéointegration et mise en function immediate. 15 ans de recherche et d’application clinique dans le traitement du maxillaire. Implantologie. 1997;24:28–32.Google Scholar
  37. 37.
    Scortecci G, Misch CE, Benner KU. Implants and restorative dentistry. London: Martin Dunitz; 2001.Google Scholar
  38. 38.
    Turkyilmaz I, Tözüm TF. 30-year outcomes of dental implants supporting mandibular fixed dental prostheses: A retrospective review of 4 cases. Implant Dent. 2015;24(5):620–4.CrossRefGoogle Scholar
  39. 39.
    Zetterqvist L, Feldman S, Rotter B, Vincenzi G, Wennström JL, Chierico A, Stach RM, Kenealy JN. A prospective, multicenter, randomized-controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J Periodontol. 2010;81(4):493–501.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gérard M. Scortecci
    • 1
    • 2
    • 3
    • 4
    Email author
  • Pierre Doglioli
    • 5
  • Patrick Philip
    • 6
  • Itzhak Binderman
    • 7
  1. 1.University of Nice-Sophia Antipolis Medical SchoolNiceFrance
  2. 2.New York UniversityNew YorkUSA
  3. 3.University of Southern CaliforniaLos AngelesUSA
  4. 4.Private PracticeNiceFrance
  5. 5.Centre de BiotechnologiesCannesFrance
  6. 6.Faculté de Médecine, Département d’HistologieUnité d’Exploration Fonctionnelle Cellulaire et Tissulaire, Hôpital Pasteur, University of Nice-Sophia AntipolisNiceFrance
  7. 7.Department of Oral BiologyUniversity of Tel AvivTel AvivIsrael

Personalised recommendations