Advertisement

Central Venous-to-Arterial Carbon Dioxide Partial Pressure Difference

  • Xavier Monnet
  • Jean-Louis Teboul
Chapter

Abstract

Assessing the adequacy of oxygen delivery and oxygen requirements is one of the key steps of haemodynamic resuscitation. For this purpose, clinical examination, lactate and central or mixed venous oxygen saturation (SvO2 and ScvO2, respectively) all have their limitations. Many of these limitations may be overcome by use of the carbon dioxide (CO2)-derived variables. The veno-arterial difference in CO2 tension (“ΔPCO2” or “PCO2 gap”) is not a straightforward indicator of anaerobic metabolism since it is influenced by the oxygen consumption. By contrast, it reliably indicates whether cardiac output is sufficient to carry the CO2 to the lungs in view of its clearance: it reflects the adequacy of cardiac output with the metabolic condition. The ratio of the PCO2 gap with the arteriovenous difference of oxygen content (PCO2 gap/C(A − V)O2) is a reliable marker of the adequacy between oxygen supply and requirements. Conversely to SvO2 and ScvO2, it remains interpretable if the oxygen extraction is impaired in septic shock patients. Compared to lactate, it has the main advantage to change without delay and to provide a real-time monitoring of tissue metabolism.

Keywords

Tissue oxygenation Cardiac output Central venous oxygenation Oxygen delivery 

References

  1. 1.
    Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Phys. 1966;211(2):493–505.Google Scholar
  2. 2.
    Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand. 2004;182(3):215–27.CrossRefPubMedGoogle Scholar
  3. 3.
    Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev. 2000;80(2):681–715.CrossRefPubMedGoogle Scholar
  4. 4.
    West JB. Gas transport to the periphery:how gases are moved to the peripheral tissues. In: West JB, editor. Respiratory physiology the essentials. 4th ed. Baltimore: Williams and Wilkins; 1990. p. 69–85.Google Scholar
  5. 5.
    Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146(1):77–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204(Pt 11):2029–33.PubMedGoogle Scholar
  7. 7.
    McHardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32(2):299–309.PubMedGoogle Scholar
  8. 8.
    Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148(4 Pt 1):867–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73(5):576–82.PubMedGoogle Scholar
  10. 10.
    Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74(5):1071–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315(3):153–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Dres M, Monnet X, Teboul JL. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J Clin Monit Comput. 2012;26(5):367–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80(2):269–75.PubMedGoogle Scholar
  15. 15.
    Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.CrossRefPubMedGoogle Scholar
  16. 16.
    Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19(11):1362–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30(2):379–84.CrossRefPubMedGoogle Scholar
  19. 19.
    Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6(6):514–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985). 2000;89(4):1317–21.CrossRefGoogle Scholar
  21. 21.
    Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med. 2004;169(4):525–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330(24):1717–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333(16):1025–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Markers of anaerobic metabolism are better than central venous oxygen saturation for detecting whether hemodynamic resuscitation will reduce tissue hypoxia. Intensive Care Med. 2011;37(Supp 1):S282.Google Scholar
  26. 26.
    Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please “mind the gap”! Intensive Care Med. 2013;39(9):1653–5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Du W, Liu DW, Wang XT, Long Y, Chai WZ, Zhou X, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care. 2013;28(6):1110.e1–5.CrossRefGoogle Scholar
  29. 29.
    Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20.CrossRefPubMedGoogle Scholar
  31. 31.
    d’Ortho MP, Delclaux C, Zerah F, Herigault R, Adnot S, Harf A. Use of glass capillaries avoids the time changes in high blood PO(2) observed with plastic syringes. Chest. 2001;120(5):1651–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AP-HP, Hôpitaux universitaires Paris-Sud Hôpital de Bicêtre, Service de réanimation médicaleLe Kremlin-BicêtreFrance
  2. 2.Univ Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR_S 999Le Kremlin-BicêtreFrance

Personalised recommendations