Advertisement

Guyton at the Bedside

  • David Berlin
  • Vivek Moitra
  • Jan Bakker
Chapter

Abstract

This chapter describes the classic model of the circulation developed by Arthur Guyton and his team. The model envisions the circulation comprised of discrete components. The cardiac output is largely determined by the interactions of the venous return and the cardiac performance. The venous return is a function of the gradient between the mean systemic filling pressure and the right atrial pressure. The distribution of blood flow is largely controlled by autoregulation, thus matching oxygen demand and subsequently generating the venous return. Thus, cardiac output is a function of oxygen demand when cardiac function is not compromised. Caring for critically ill patient requires an understanding of Guytonian hemodynamics.

Keywords

Physiology Hemodynamic monitoring Monitoring Resuscitation Fluid resuscitation Cardiac output Venous return 

References

  1. 1.
    Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20:271.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cowley AW Jr, Guyton AC. Heart rate as a determinant of cardiac output in dogs with arteriovenous fistula. Am J Cardiol. 1971;28:321–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Prather JW, Taylor AE, Guyton AC. Effect of blood volume, mean circulatory pressure, and stress relaxation on cardiac output. Am J Phys. 1969;216:467–72.Google Scholar
  4. 4.
    Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Phys. 1955;180:463–8.Google Scholar
  5. 5.
    Magder S. Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol (1985). 2006;101:1523–5.CrossRefGoogle Scholar
  6. 6.
    Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40:1564–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Guyton AC, Jones CE, Coleman TG. Circulatory physiology; cardiac output and its regulation. Philadelphia: Saunders; 1973.Google Scholar
  8. 8.
    Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26:1061–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19:55.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marik PE. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:21.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–81.CrossRefPubMedGoogle Scholar
  12. 12.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Phys. 1957;189:609–15.Google Scholar
  14. 14.
    Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Sagrista-Sauleda J, Angel J, Sambola A, Permanyer-Miralda G. Hemodynamic effects of volume expansion in patients with cardiac tamponade. Circulation. 2008;117:1545–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Sagrista-Sauleda J, Angel J, Sambola A, Alguersuari J, Permanyer-Miralda G, Soler-Soler J. Low-pressure cardiac tamponade: clinical and hemodynamic profile. Circulation. 2006;114:945–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Krogh A. The regulation of the supply of blood to the right heart. Skan Arch Physiol. 1912;27:227–48.CrossRefGoogle Scholar
  18. 18.
    De Jager S. Experiments and considerations on haemodynamics. J Physiol. 1886;7:130–215.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tigerstedt C. Zur Kenntnis der von dem linken Herzen herausgetriebenen Blutmenge in ihrer Abhängigkeit von verschiedenen Variabein. Skand Arch Physiol. 1909;22:115–90.CrossRefGoogle Scholar
  20. 20.
    Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, Monnet X. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Cecconi M, Aya HD, Geisen M, Ebm C, Fletcher N, Grounds RM, Rhodes A. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39:1299–305.CrossRefPubMedGoogle Scholar
  22. 22.
    Guyton AC, Lindsey AW, Abernathy B, Langston JB. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Phys. 1958;192:126–30.Google Scholar
  23. 23.
    Cohn JN, Luria MH. Studies in clinical shock and hypotension. II. Hemodynamic effects of norepinephrine and angiotensin. J Clin Invest. 1965;44:1494–504.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van den Meiracker AH, van den Berg B, de Herder W, Bakker J. Extreme blood pressure oscillations in a patient with a MEN-2a syndrome. J Clin Endocrinol Metab. 2014;99:701–2.CrossRefPubMedGoogle Scholar
  25. 25.
    Notarius CF, Levy RD, Tully A, Fitchett D, Magder S. Cardiac versus noncardiac limits to exercise after heart transplantation. Am Heart J. 1998;135:339–48.CrossRefPubMedGoogle Scholar
  26. 26.
    Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiol. 2013;13:17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care. 2013;17:R278.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shen T, Baker K. Venous return and clinical hemodynamics: how the body works during acute hemorrhage. Adv Physiol Educ. 2015;39:267–71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Division of Critical Care, Department of AnesthesiologyCollege of Physicians and Surgeons of Columbia UniversityNew YorkUSA
  3. 3.Department of Intensive Care AdultsErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
  4. 4.Departamento de Medicina Intensiva, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Division of Pulmonary and Critical Care MedicineCollege of Physicians and Surgeons of Columbia UniversityNew YorkUSA
  6. 6.Division of Pulmonary, Sleep Medicine and Critical CareNew York University, Langone Medical Center-Bellevue HospitalNew YorkUSA

Personalised recommendations