Advertisement

Clinical Implications of Monitoring Tissue Perfusion in Cardiogenic Shock

  • John Moore
  • John F. Fraser
Chapter

Abstract

Cardiogenic shock is a clinical state of acute circulatory failure secondary to a reduction in cardiac output to a level that is inadequate to supply tissues with sufficient oxygen for cellular metabolism. The vast majority of cases of cardiogenic shock are due to acute myocardial infarction (AMI) and subsequent LV dysfunction. Cardiogenic shock can also be caused by ventricular wall rupture, acute mitral valve regurgitation, valvular heart diseases, dysrhythmias or cardiomyopathy.

The critical care management of cardiogenic shock remains challenging, as reflected in the mortality rates of up to 50% of patients with AMI (Theile et al., N Engl J Med 367:1287–1296, 2012). Common pharmacological agents used to improve cardiac output and reverse tissue malperfusion, by definition, increase the myocardial oxygen demand with potentially deleterious consequences (Samuels et al., J Card Surg 14:288–293, 1999). For this reason it is critical to employ a strategy of augmenting cardiac output just enough to realise adequate organ perfusion without further exacerbating the supply/demand mismatch that the failing heart represents. The attainment of this balance point remains extremely difficult, exacerbated by the inherent inadequacies of our current technologies and biological markers that poorly, if at all, determine this endpoint. Consequently there is a fundamental requirement to develop technologies and treatment strategies with tissue perfusion at their core.

Keywords

Cardiogenic shock Multi-organ failure Microcirculation Resuscitation Cardiotonic agents Fluid therapy Extracorporeal membrane oxygenation Heart assist devices Ischemic heart disease Myocardial infarction 

References

  1. 1.
    Thiele H, Ohman EM, Desch S, Eitel I, de Waha S. Management of cardiogenic shock. Eur Heart J. 2015;36(20):1223–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Samuels LE, Kaufman MS, Thomas MP, Holmes EC, Brockman SK, Wechsler AS. Pharmacological criteria for ventricular assist device insertion following postcardiotomy shock: experience with the Abiomed BVS system. J Card Surg. 1999;14(4):288–93.CrossRefPubMedGoogle Scholar
  3. 3.
    Moore JP, Dyson A, Singer M, Fraser J. Microcirculatory dysfunction and resuscitation: the why, when and how. Br J Anaesth. 2014;11(3):366–75.CrossRefGoogle Scholar
  4. 4.
    Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, Pinsky MR, Hofer CK, Teboul JL, de Boode WP, Scolletta S, Vieillard-Baron A, De Backer D, Walley KR, Maggiorini M, Singer M. Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care. 2011;15(4):229.  https://doi.org/10.1186/cc10291.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276(11):889–97.CrossRefPubMedGoogle Scholar
  6. 6.
    Vincent JL, Pinsky MR, Sprung CL, Levy M, Marini JJ, Payen D, Rhodes A, Takala J. The pulmonary artery catheter: in medio virtus. Crit Care Med. 2008;36(11):3093–6.  https://doi.org/10.1097/CCM.0b013e31818c10c7.CrossRefPubMedGoogle Scholar
  7. 7.
    Freedlander SO, Lenhart CH. Clinical observations on the capillary circulation. Arch Intern Med. 1922;29:12–32.  https://doi.org/10.1001/archinte.1922.00110010017002.CrossRefGoogle Scholar
  8. 8.
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147(1):91–9.CrossRefPubMedGoogle Scholar
  9. 9.
    den Uil CA, Lagrand WK, van der Ent M, Jewbali LS, Cheng JM, Spronk PE, Simoons ML. Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2010;31(24):3032–9.  https://doi.org/10.1093/eurheartj/ehq324.CrossRefGoogle Scholar
  10. 10.
    Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Goebel B, Lauten A, Pfeifer R, Figulla HR. Evaluation of the sublingual microcirculation in cardiogenic shock. Clin Hemorheol Microcirc. 2009;42:141–8.PubMedGoogle Scholar
  11. 11.
    Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, Kiehntopf M, Figulla HR, Jung C. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13(7):711–7.  https://doi.org/10.1093/eurjhf/hfr043.CrossRefPubMedGoogle Scholar
  12. 12.
    Wroblewski H, Kastrup J, Norgaard T, Mortensen SA, Haunso S. Evidence of increased microvascular resistance and arteriolar hyalinosis in skin in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 1992;69:769–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Elbers PW, Prins WB, Plokker HW, van Dongen EP, van Iterson M, Ince C. Electrical cardioversion for atrial fibrillation improves microvascular flow independent of blood pressure changes. J Cardiothorac Vasc Anesth. 2012;26(5):799–803.  https://doi.org/10.1053/j.jvca.2012.04.016.CrossRefPubMedGoogle Scholar
  14. 14.
    Hasdai D, Holmes DR Jr, Califf RM, Thompson TD, Hochman JS, Pfisterer M, Topol EJ. Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTO Investigators. Global utilization of streptokinase and tissue-plasminogen activator for occluded coronary arteries. Am Heart J. 1999;138(1 Pt 1):21–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Kara A, Akin S, dos Reis Miranda D, Struijs A, Caliskan K, van Thiel RJ, Dubois EA, de Wilde W, Zijlstra F, Gommers D, Ince C. Microcirculatory assessment of patients under VA-ECMO. Crit Care. 2016;20:344.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric hemodynamic response to circulatory shock: an overview. Shock. 2001;15(5):329–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.  https://doi.org/10.1056/NEJM199908193410806.CrossRefPubMedGoogle Scholar
  19. 19.
    Toner A, Whittle J, Ackland GL. Autonomic dysfunction is the motor of chronic critical illness. In: Vincent J-L, editor. Annual update in intensive care and emergency medicine 2013. Berlin: Springer; 2013. p. 199–209.  https://doi.org/10.1007/978-3-642-35109-9_16.CrossRefGoogle Scholar
  20. 20.
    Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med. 2000;28(5):1290–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J. Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation. 1999;99(16):2113–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, Xu XB, Kobari Y, Pritchard K Jr, Sessa WC, Hintze TH. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res. 1996;78(1):58–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, Seyedi N, Xu XB, Wolin MS, Hintze TH. Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol. 1994;266:H670–80.CrossRefPubMedGoogle Scholar
  24. 24.
    den Uil CA, Caliskan K, Lagrand WK, van der Ent M, Jewbali LS, van Kuijk JP, Spronk PE, Simoons ML. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med. 2009;35(11):1893–9.  https://doi.org/10.1007/s00134-009-1591-4.CrossRefGoogle Scholar
  25. 25.
    den Uil CA, Lagrand WK, Spronk PE, van der Ent M, Jewbali LS, Brugts JJ, Ince C, Simoons ML. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009;11:386–90.  https://doi.org/10.1093/eurjhf/hfp021.CrossRefGoogle Scholar
  26. 26.
    Hochman JS, Sleeper LA, Godfrey E, McKinlay SM, Sanborn T, Col J, LeJemtel T. SHould we emergently revascularize occluded coronaries for cardiogenic shocK: an international randomized trial of emergency PTCA/CABG-trial design. The SHOCK Trial Study Group. Am Heart J. 1999;137(2):313–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Menon V, Slater JN, White HD, Sleeper LA, Cocke T, Hochman JS. Acute myocardial infarction complicated by systemic hypoperfusion without hypotension: report of the SHOCK trial registry. Am J Med. 2000;108(5):374–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Feng Q, Lu X, Jones DL, Shen J, Arnold JMO. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation. 2001;104:700–4.  https://doi.org/10.1161/hc3201.092284.CrossRefPubMedGoogle Scholar
  29. 29.
    Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995;95:360–6.  https://doi.org/10.1172/JCI117664.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Phys. 1996;271:H2646–52.Google Scholar
  31. 31.
    Cotter G, Kaluski E, Blatt A, Milovanov O, Moshkovitz Y, Zaidenstein R, Salah A, Alon D, Michovitz Y, Metzger M, Vered Z, Golik A. L-NMMA (a nitric oxide synthase inhibitor) is effective in the treatment of cardiogenic shock. Circulation. 2000;101:1358–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Cotter G, Kaluski E, Milo O, Blatt A, Salah A, Hendler A, Krakover R, Golick A, Vered Z. LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J. 2003;24:1287–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Dzavik V, Cotter G, Reynolds HR, Alexander JH, Ramanathan K, Stebbins AL, Hathaway D, Farkouh ME, Ohman EM, Baran DA, Prondzinsky R, Panza JA, Cantor WJ, Vered Z, Buller CE, Kleiman NS, Webb JG, Holmes DR, Parrillo JE, Hazen SL, Gross SS, Harrington RA, Hochman JS, SHould We Inhibit Nitric Oxide Synthase in Cardiogenic shocK 2 (SHOCK-2) Investigators. Effect of nitric oxide synthase inhibition on haemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study. Eur Heart J. 2007;28(9):1109–16.  https://doi.org/10.1093/eurheartj/ehm075.CrossRefPubMedGoogle Scholar
  34. 34.
    Sánchez de Miguel L, Arriero MM, Montón M, López-Farré A, Farré J, Cabestrero F, Martín E, Romero J, Jiménez P, García-Méndez A, de Frutos T, Jiménez A, García R, Gómez J, de Andrés R, De la Calle-Lombana LM, Rico L. Nitric oxide production by neutrophils obtained from patients during acute coronary syndromes: expression of the nitric oxide synthase isoforms. J Am Coll Cardiol. 2002;39:818–25.  https://doi.org/10.1016/s0735-1097(01)01828-9.CrossRefPubMedGoogle Scholar
  35. 35.
    TRIUMPH Investigators, Alexander JH, Reynolds HR, Stebbins AL, Dzavik V, Harrington RA, Van de Werf F, Hochman JS. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA. 2007;297(15):1657–66.  https://doi.org/10.1001/jama.297.15.joc70035.CrossRefGoogle Scholar
  36. 36.
    Dormandy J, Ernst E, Matrai A, Flute PT. Hemorrheologic changes following acute myocardial infarction. Am Heart J. 1982;104(6):1364–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Geppert A, Steiner A, Zorn G, Delle-Karth G, Koreny M, Haumer M, Siostrzonek P, Huber K, Heinz G. Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Crit Care Med. 2002;30:1987–94.  https://doi.org/10.1097/01.CCM.0000026730.19872.33.CrossRefPubMedGoogle Scholar
  38. 38.
    Kohsaka S, Menon V, Lowe AM, Lange M, Dzavik V, Sleeper LA, Hochman JS, SHOCK Investigators. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165(14):1643–50.  https://doi.org/10.1001/archinte.165.14.1643.CrossRefPubMedGoogle Scholar
  39. 39.
    Neumann FJ, Ott I, Gawaz M, Richardt G, Holzapfel H, Jochum M, Schomig A. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation. 1995;92:748–55.CrossRefPubMedGoogle Scholar
  40. 40.
    Ott I, Neumann FJ, Kenngott S, Gawaz M, Schomig A. Procoagulant inflammatory responses of monocytes after direct balloon angioplasty in acute myocardial infarction. Am J Cardiol. 1998;82:938–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.  https://doi.org/10.1056/NEJM199406163302404.CrossRefPubMedGoogle Scholar
  42. 42.
    Hogan CJ, Ward KR, Franzen DS, Rajendran B, Thacker LR. Sublingual tissue perfusion improves during emergency treatment of acute decompensated heart failure. Am J Emerg Med. 2012;30(6):872–80.  https://doi.org/10.1016/j.ajem.2011.06.005.CrossRefPubMedGoogle Scholar
  43. 43.
    Harrois A, Dupic L, Duranteau J. Targeting the microcirculation in resuscitation of acutely unwell patients. Curr Opin Crit Care. 2011;17:303–7.  https://doi.org/10.1097/MCC.0b013e3283466ba0.CrossRefPubMedGoogle Scholar
  44. 44.
    Vincent JL, De Backer D. ICU nephrology: the implications of cardiovascular alterations in the acutely ill. Kidney Int. 2012;81(11):1060–6.  https://doi.org/10.1038/ki.2011.389.CrossRefPubMedGoogle Scholar
  45. 45.
    Rao SV, Jollis JG, Harrington RA, Granger CB, Newby LK, Armstrong PW, Moliterno DJ, Lindblad L, Pieper K, Topol EJ, Stamler JS, Califf RM. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA. 2004;292(13):1555–62.  https://doi.org/10.1001/jama.292.13.1555.CrossRefPubMedGoogle Scholar
  46. 46.
    Task Force on the Management of ST-segment Elevation Acute Myocardial Infarction of the European Society of Cardiology (ESC), Steg PG, James SK, Atar D, Badano LP, Blömstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619.  https://doi.org/10.1093/eurheartj/ehs215.CrossRefGoogle Scholar
  47. 47.
    Unverzagt S, Wachsmuth L, Hirsch K, Thiele H, Buerke M, Haerting J, Werdan K, Prondzinsky R. Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst Rev. 2014;1:CD009669.  https://doi.org/10.1002/14651858.CD009669.pub2.CrossRefGoogle Scholar
  48. 48.
    Thackray S, Easthaugh J, Freemantle N, Cleland JG. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure-a meta-regression analysis. Eur J Heart Fail. 2002;4(4):515–29.CrossRefPubMedGoogle Scholar
  49. 49.
    De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–89.  https://doi.org/10.1056/NEJMoa0907118.CrossRefPubMedGoogle Scholar
  50. 50.
    Fries M, Weil MH, Chang YT, Castillo C, Tang W. Microcirculation during cardiac arrest and resuscitation. Crit Care Med. 2006;34:S454–7.  https://doi.org/10.1097/01.CCM.0000247717.81480.B2.CrossRefPubMedGoogle Scholar
  51. 51.
    Jung C, Rodiger C, Fritzenwanger M, Schumm J, Lauten A, Figulla HR, Ferrari M. Acute microflow changes after stop and restart of intra-aortic balloon pump in cardiogenic shock. Clin Res Cardiol. 2009;98(8):469–75.  https://doi.org/10.1007/s00392-009-0018-0.CrossRefPubMedGoogle Scholar
  52. 52.
    Garcia-Gonzalez MJ, Dominguez-Rodriguez A, Ferrer-Hita JJ, Abreu-Gonzalez P, Munoz MB. Cardiogenic shock after primary percutaneous coronary intervention: effects of levosimendan compared with dobutamine on haemodynamics. Eur J Heart Fail. 2006;8(7):723–8.  https://doi.org/10.1016/j.ejheart.2006.01.007.CrossRefPubMedGoogle Scholar
  53. 53.
    Wimmer R. Effects of levosimendan on microcirculation in patients with cardiogenic shock. Circulation. 2008;118:s664–5.Google Scholar
  54. 54.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL, Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.  https://doi.org/10.1056/NEJMoa012175.CrossRefPubMedGoogle Scholar
  55. 55.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM 3rd, Long JW, Wozniak TC, Ghumman W, Farrar DJ, Frazier OH, HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.  https://doi.org/10.1056/NEJMoa0909938.CrossRefPubMedGoogle Scholar
  56. 56.
    Holman WL, Kormos RL, Naftel DC, Miller MA, Pagani FD, Blume E, Cleeton T, Koenig SC, Edwards L, Kirklin JK. Predictors of death and transplant in patients with a mechanical circulatory support device: a multi-institutional study. J Heart Lung Transplant. 2009;28(1):44–50.  https://doi.org/10.1016/j.healun.2008.10.011.CrossRefPubMedGoogle Scholar
  57. 57.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504.  https://doi.org/10.1016/j.healun.2015.10.003.CrossRefPubMedGoogle Scholar
  58. 58.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transpl. 2013;32(2):157–87.  https://doi.org/10.1016/j.healun.2012.09.013.CrossRefGoogle Scholar
  59. 59.
    Jung C, Lauten A, Rodiger C, Krizanic F, Figulla HR, Ferrari M. Effect of intra-aortic balloon pump support on microcirculation during high-risk percutaneous intervention. Perfusion. 2009;24(6):417–21.  https://doi.org/10.1177/0267659109358208.CrossRefPubMedGoogle Scholar
  60. 60.
    Munsterman LD, Elbers PW, Ozdemir A, van Dongen EP, van Iterson M, Ince C. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow. Crit Care. 2010;14(4):R161.  https://doi.org/10.1186/cc9242.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, Richardt G, Hennersdorf M, Empen K, Fuernau G, Desch S, Eitel I, Hambrecht R, Fuhrmann J, Bohm M, Ebelt H, Schneider S, Schuler G, Werdan K, IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.  https://doi.org/10.1056/NEJMoa1208410.CrossRefPubMedGoogle Scholar
  62. 62.
    Engstrom AE, Cocchieri R, Driessen AH, Sjauw KD, Vis MM, Baan J, de Jong M, Lagrand WK, van der Sloot JA, Tijssen JG, de Winter RJ, de Mol BA, Piek JJ, Henriques JP. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: the Academic Medical Center intensive care unit experience. Crit Care Med. 2011;39(9):2072–9.  https://doi.org/10.1097/CCM.0b013e31821e89b5.CrossRefPubMedGoogle Scholar
  63. 63.
    Engstrom AE, Granfeldt H, Seybold-Epting W, Dahm M, Cocchieri R, Driessen AH, Sjauw KD, Vis MM, Baan J, Koch KT, De Jong M, Lagrand WK, Van Der Sloot JA, Tijssen JG, De Winter RJ, De Mol BA, Piek JJ, Henriques JP. Mechanical circulatory support with the Impella 5.0 device for postcardiotomy cardiogenic shock: a three-center experience. Minerva Cardioangiol. 2013;61(5):539–46.PubMedGoogle Scholar
  64. 64.
    Jung C, Ferrari M, Rodiger C, Fritzenwanger M, Figulla H-R. Combined Impella and intra-aortic balloon pump support to improve macro- and microcirculation: a clinical case. Clin Res Cardiol. 2008;97:849–50.CrossRefPubMedGoogle Scholar
  65. 65.
    Lam K, Sjauw KD, Henriques JP, Ince C, de Mol BA. Improved microcirculation in patients with an acute ST-elevation myocardial infarction treated with the Impella LP2.5 percutaneous left ventricular assist device. Clin Res Cardiol. 2009;98(5):311–8.  https://doi.org/10.1007/s00392-009-0006-4.CrossRefPubMedGoogle Scholar
  66. 66.
    Mullany D, Shekar K, Platts D, Fraser J. The rapidly evolving use of extracorporeal life support (ECLS) in adults. Heart Lung Circ. 2014;23(11):1091–2.  https://doi.org/10.1016/j.hlc.2014.04.009.CrossRefPubMedGoogle Scholar
  67. 67.
    Sheu JJ, Tsai TH, Lee FY, Fang HY, Sun CK, Leu S, Yang CH, Chen SM, Hang CL, Hsieh YK, Chen CJ, Wu CJ, Yip HK. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit Care Med. 2010;38(9):1810–7.  https://doi.org/10.1097/CCM.0b013e3181e8acf7.CrossRefPubMedGoogle Scholar
  68. 68.
    Shekar K, Mullany DV, Thomson B, Ziegenfuss M, Platts DG, Fraser JF. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Crit Care. 2014;18(3):219.  https://doi.org/10.1186/cc13865.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jung C, Ferrari M, Gradinger R, Fritzenwanger M, Pfeifer R, Schlosser M, Poerner TC, Brehm BR, Figulla HR. Evaluation of the microcirculation during extracorporeal membrane-oxygenation. Clin Hemorheol Microcirc. 2008;40(4):311–4.PubMedGoogle Scholar
  70. 70.
    Jung C, Lauten A, Roediger C, Fritzenwanger M, Schumm J, Figulla HR, Ferrari M. In vivo evaluation of tissue microflow under combined therapy with extracorporeal life support and intra-aortic balloon counterpulsation. Anaesth Intensive Care. 2009;37(5):833–5.PubMedGoogle Scholar
  71. 71.
    Kilburn DJ, Shekar K, Fraser JF. The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: causation or association? Biomed Res Int. 2016;2016:1–14.  https://doi.org/10.1155/2016/1094296.CrossRefGoogle Scholar
  72. 72.
    Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, Esmailian F, Azarbal B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97(2):610–6.  https://doi.org/10.1016/j.athoracsur.2013.09.008.CrossRefPubMedGoogle Scholar
  73. 73.
    Akin S, dos Reis Miranda D, Caliskan K, Soliman OI, Guven G, Struijs A, van Thiel RJ, Jewbali LS, Lima A, Gommers D, Zijlstra F, Ince C. Functional evaluation of sublingual microcirculation indicates successful weaning from VA-ECMO in cardiogenic shock. Crit Care. 2017;21(1):265.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tanaka S, Harrois A, Nicolai C, Flores M, Hamada S, Vicaut E, Duranteau J. Qualitative real-time analysis by nurses of sublingual microcirculation in intensive care unit: the MICRONURSE study. Crit Care. 2015;19:388.  https://doi.org/10.1186/s13054-015-1106-3.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Werdan K, Gielen S, Ebelt H, Hochman JS. Mechanical circulatory support in cardiogenic shock. Eur Heart J. 2014;35(3):156–67.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Intensive CareSunshine Coast Institute for Critical Care Research (SCICCR), Sunshine Coast University HospitalBirtinyaAustralia
  2. 2.The School of MedicineThe University of QueenslandBrisbaneAustralia
  3. 3.Critical Care Research Group (CCRG)The Prince Charles HospitalBrisbaneAustralia

Personalised recommendations