Livestock Production via Micromanipulation

  • Akira OnishiEmail author
  • Anthony C. F. Perry


The use of micromanipulation techniques in the production of livestock mammals, focusing on intracytoplasmic sperm injection (ICSI) and the pig, Sus scrofa, is discussed in this chapter. ICSI is a powerful method for assisted fertilization. It is typically employed in cases in which semen characteristics are insufficient for conventional in vitro fertilization (IVF). Unlike IVF, ICSI mechanically delivers the sperm deep inside the egg cytoplasm by injection through a micropipette.


Intracytoplasmic sperm injection Mammalian ICSI Transgenesis Xenograft-ICSI technique Micromanipulation livestock genome 


  1. 1.
    Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod. 1976;15:467–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia-Roselló E, Garcia-Mengual E, Coy P, Alfonso J, Silvestre MA. Intracytoplasmic sperm injection in livestock species: an update. Reprod Domest Anim. 2009;44:143–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Morozumi K, Yanagimachi R. Incorporation of the acrosome into the oocyte during intracytoplasmic sperm injection could be potentially hazardous to embryo development. Proc Natl Acad Sci U S A. 2005;102:14209–14.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Perry ACF, Verlhac M-H. Second meiotic arrest and exit in frogs and mice. EMBO Rep. 2008;9:246–51.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Yong HY, Hao Y, Lai L, Li R, Murphy CN, Rieke A, Wax D, Samuel M, Prather RS. Production of a transgenic piglet by a sperm injection technique in which no chemical or physical treatments were used for oocytes or sperm. Mol Reprod Dev. 2006;73:595–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Katayama M, Rieke A, Cantley T, Murphy C, Dowell L, Sutovsky P, Day BN. Improved fertilization and embryo development resulting in birth of live piglets after intracytoplasmic sperm injection and in vitro culture in a cysteine-supplemented medium. Theriogenology. 2007;67:835–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, Izumi T, Perry ACF. Mammalian phospholipase C zeta induces oocyte activation from the sperm perinuclear matrix. Dev Biol. 2004;274:370–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Macháty Z, Bonk AJ, Kühholzer B, Prather RS. Porcine oocyte activation induced by a cytosolic sperm factor. Mol Reprod Dev. 2000;57:290–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Malcuit C, Maserati M, Takahashi Y, Page R, Fissore RA. Intracytoplasmic sperm injection in the bovine induces abnormal [Ca2+]i responses and oocyte activation. Reprod Fertil Dev. 2006;18:39–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin MJ, Pinkert CA. Production of transgenic swine by DNA microinjection. In: Pincert CA, editor. Transgenic animal technology: a laboratory handbook. 2nd ed. California: Academic; 2002. p. 307–36.CrossRefGoogle Scholar
  12. 12.
    Niemann H, Döpke HH, Hadeler KG. Production of transgenic ruminants by DNA microinjection. In: Pincert CA, editor. Transgenic animal technology: a laboratory handbook. 2nd ed. California: Academic; 2002. p. 337–57.CrossRefGoogle Scholar
  13. 13.
    Robl JM, Wang Z, Kasinathan P, Kuroiwa Y. Transgenic animal production and animal biotechnology. Theriogenology. 2007;67:127–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Yazaki S, Iwamoto M, Onishi A, Miwa Y, Suzuki S, Fuchimoto D, Sembon S, Furusawa T, Hashimoto M, Oishi T, Liu D, Nagasaka T, Kuzuya T, Maruyama S, Ogawa H, Kadomatsu K, Uchida K, Nakao A, Kobayashi T. Successful cross-breeding of cloned pigs expressing endo-galactosidase C and human decay accelerating factor. Xenotransplantation. 2009;16:511–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J. 2009;4:1278–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991;67:179–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Perry ACF, Wakayama T, Kishikawa H, Kasai T, Okabe M, Toyoda Y, Yanagimachi R. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Perry ACF, Rothman A, de las Heras JI, Feinstein P, Mombaerts P, Cooke HJ, Wakayama T. Efficient metaphase II transgenesis with different transgene archetypes. Nat Biotechnol. 2001;19:1071–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H. Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res. 2009;18:697–706.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakai M, Kaneko H, Somfai T, Maedomari N, Ozawa M, Noguchi J, Ito J, Kashiwazaki N, Kikuchi K. Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts. Reproduction. 2010;139:331–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Martin MJ. Development of in vivo-matured porcine oocytes following intracytoplasmic sperm injection. Biol Reprod. 2000;63:109–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Kolbe T, Holtz W. Birth of piglet derived from an oocyte fertilized by intracytoplasmic sperm injection (ICSI). Anim Reprod Sci. 2000;64:97–101.PubMedCrossRefGoogle Scholar
  23. 23.
    Lai L, Sun Q, Wu G, Murpy CN, Kühholzer B, Park KW, Bonk AJ, Day BN, Prather RS. Development of porcine embryos and offspring after intracytoplasmic sperm injection with liposome transfected or non-transfected sperm into in vitro matured oocytes. Zygote. 2001;9:339–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Probst S, Rath D. Production of piglets using intracytoplasmic sperm injection (ICSI) with flowcytometrically sorted boar semen and artificially activated oocytes. Theriogenology. 2003;59:961–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakai M, Kashiwazaki N, Takizawa A, Hayashi Y, Nakatsukasa E, Fuchimoto D, Noguchi J, Kaneko H, Shino M, Kikuchi K. Viable piglets generated from porcine oocytes matured in vitro and fertilized by intracytoplasmic sperm head injection. Biol Reprod. 2003;68:1003–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Wei H, Fukui Y. Births of calves derived from embryos produced by intracytoplasmic sperm injection without exogenous oocyte activation. Zygote. 2002;10:149–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Horiuchi T, Emuta C, Yamauchi Y, Oikawa T, Numabe T, Yanagimachi R. Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: a methodological approach. Theriogenology. 2002;57:1013–24.CrossRefGoogle Scholar
  28. 28.
    Galli C, Vassiliev I, Lagutina I, Galli A, Lazzari G. Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Theriogenology. 2003;60:1467–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Oikawa T, Takada N, Kikuchi T, Numabe T, Takenaka M, Horiuchi T. Evaluation of activation treatments for blastocyst production and birth of viable calves following bovine intracytoplasmic sperm injection. Anim Reprod Sci. 2005;86:187–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Horiuchi T. Application study of intracytoplasmic sperm injection for golden hamster and cattle production. J Reprod Dev. 2006;52:13–21.PubMedCrossRefGoogle Scholar
  31. 31.
    Gòmez MC, Catt JW, Evans G, Maxwell WMC. Cleavage, development and competence of sheep embryos fertilized by intracytoplasmic sperm injection and in vitro fertilization. Theriogenology. 1998;49:1143–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Cochran R, Meintjes M, Reggio B, Hylan D, Carter J, Pinto C, Paccamonti D, Godke RA. Live foals produced from sperm-injected oocytes derived from pregnant mares. J Equine Vet Sci. 1998;11:736–40.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Transgenic Pig Research Unit, National Institute of Agrobiological SciencesTsukubaJapan
  2. 2.Laboratory of Mammalian Molecular Embryology, Centre for Regenerative Medicine, University of BathBathUK
  3. 3.Department of Biology and BiochemistryUniversity of BathBathUK

Personalised recommendations