Advertisement

Vitrification: Methods Contributing to Successful Cryopreservation Outcomes

  • James J. Stachecki
Chapter

Abstract

The only method of stable and long-term preservation of perishable biological materials is to keep them in the glassy (vitreous) state. Embryo and gamete storage has come far since the discovery of glycerol, to the successful cryopreservation of mouse embryos, to modern ultra rapid cooling techniques. Pioneering studies in animal models, along with new innovative ideas, hold the key to more breakthroughs. Emerging methods of kinetic vitrification and more robust meta-stable solutions will lead us into the future. Although we have been successful in storing human embryos and gametes, there is a lot we do not understand. Not all cells survive storage, and not every embryo that does successfully develops. Factors affecting outcomes include embryo quality, patient demographics, culture conditions, vitrification, uterine preparation, and embryo transfer. Among these synchronization of the uterus with proper P4 dosage and timing is critical for a successful pregnancy.

Keywords

Vitrification Cryopreservation Progesterone Uterine preparation Pregnancy 

References

  1. 1.
    Luyet B, Hodapp A. Revival of frog’s spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol. 1938;39:433–4.CrossRefGoogle Scholar
  2. 2.
    Luyet B. The vitrification of organic colloids and protoplasm. Biodynamica. 1937;1:1–14.Google Scholar
  3. 3.
    Meryman HT. Osmotic stress as a mechanism of freezing injury. Cryobiology. 1971;8:489–500.PubMedCrossRefGoogle Scholar
  4. 4.
    Polge C. The freezing of mammalian embryos: perspectives and possibilities. Ciba Found Symp. 1977:3–18.Google Scholar
  5. 5.
    Mazur P. Cryobiology: the freezing of biological systems. Science. 1970;168:939–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Willadsen SM, Polge C, Rowson LE, Moor RM. Deep freezing of sheep embryos. J Reprod Fertil. 1976;46:151–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Katkov II. Current frontiers in cryobiology. Rijeka: InTech; 2012.CrossRefGoogle Scholar
  8. 8.
    Katkov II, Bolyukh VF, Chernetsov OA, Dudin PI, Grigoriev AY, Isachenko V, Isachenko E, Lulat AG-M, Moskovtsev SI, Petrushko MP, Pinyaev VI, Sokol KM, Sokol YI, Sushko AB, Yakhnenko I. Kinetic vitrification of spermatozoa of vertebrates: what can we learn from nature? In: Current frontiers in cryobiology. Rijeka: InTech; 2012. p. 3–40.CrossRefGoogle Scholar
  9. 9.
    Luyet B. Physical changes occurring in frozen solutions during rewarming and melting. In: Wolstenholme G, OC M, editors. The frozen cell. London: J & A Churchill; 1970. p. 27–50.Google Scholar
  10. 10.
    Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol. 1963;47:347–69.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Stachecki J. Control of solution effect during controlled-rate cooling: principles and practical application. In: Borini A, Coticchio G, editors. Preservation of human oocytes: informa Healthcare; 2009. p. 151–61.Google Scholar
  12. 12.
    Fahy GM, Wowk B. Principles of cryopreservation by vitrification. Methods Mol Biol. 2015;1257:21–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313:573–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wowk B. Thermodynamic aspects of vitrification. Cryobiology. 2010;60:11–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Fehilly CB, Cohen J, Simons RF, Fishel SB, Edwards RG. Cryopreservation of cleaving embryos and expanded blastocysts in the human: a comparative study. Fertil Steril. 1985;44:638–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Hartshorne GM, Elder K, Crow J, Dyson H, Edwards RG. The influence of in-vitro development upon post-thaw survival and implantation of cryopreserved human blastocysts. Hum Reprod. 1991;6:136–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Menezo Y, Nicollet B, Herbaut N, Andre D. Freezing cocultured human blastocysts. Fertil Steril. 1992;58:977–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Kaufman RA, Menezo Y, Hazout A, Nicollet B, DuMont M, Servy EJ. Cocultured blastocyst cryopreservation: experience of more than 500 transfer cycles. Fertil Steril. 1995;64:1125–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11:307–11.CrossRefGoogle Scholar
  20. 20.
    Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Whittingham DG. The viability of frozen-thawed mouse blastocysts. J Reprod Fertil. 1974;37:159–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Whittingham DG. Survival of rat embryos after freezing and thawing. J Reprod Fertil. 1975;43:575–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Whittingham DG, Adams CE. Low temperature preservation of rabbit embryos. J Reprod Fertil. 1976;47:269–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Willadsen SM. Factors affecting the survival of sheep embryos during-freezing and thawing. In: The freezing of mammalian embryos, vol. 52. Amsterdam: North-Holland Publishing Co.; 1977. p. 175–201.Google Scholar
  25. 25.
    Massip A, Mulnard J. Time-lapse cinematographic analysis of hatching of normal and frozen-thawed cow blastocysts. J Reprod Fertil. 1980;58:475–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Farrand GD, Elsden RP, Seidel GEJ. Effect of slow cooling end point temperature on survival of frozen bovine embryos. J Anim Sci. 1985;61:460–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Pope CE, Pope VZ, Beck LR. Cryopreservation and transfer of baboon embryos. J In Vitro Fert Embryo Transf. 1986;3:33–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Mazur P, Schneider U. Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys. 1986;8:259–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Schiewe MC, Rall WF, Stuart LD, Wildt DE. Analysis of cryoprotectant, cooling rate and in situ dilution using conventional freezing or vitrification for cryopreserving sheep embryos. Theriogenology. 1991;36:279–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Kasai M, Hamaguchi Y, Zhu SE, Miyake T, Sakurai T, Machida T. High survival of rabbit morulae after vitrification in an ethylene glycol-based solution by a simple method. Biol Reprod. 1992;46:1042–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51:53.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hartshorne GM. Dynamic and phagocytotic activity of human granulosa cells in vitro. Hum Reprod. 1991;6:331–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kolibianakis EM, Venetis CA, Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow freezing: which one is better? Curr Opin Obstet Gynecol. 2009;21:270–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Herrero L, Martinez M, Garcia-Velasco JA. Current status of human oocyte and embryo cryopreservation. Curr Opin Obstet Gynecol. 2011;23:245–50.PubMedGoogle Scholar
  35. 35.
    Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev. 1996;45:503–12.PubMedCrossRefGoogle Scholar
  36. 36.
    Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod. 1996;54:1059–69.PubMedCrossRefGoogle Scholar
  37. 37.
    Dobrinsky JR, Johnson LA. Cryopreservation of porcine embryos by vitrification: a study of in vitro development. Theriogenology. 1994;42:25–35.PubMedCrossRefGoogle Scholar
  38. 38.
    Arav A, Aroyo A, Yavin S, Roth Z. Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis. Reprod Biomed Online. 2008;17:669–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Shaw PW, Bernard AG, Fuller BJ, Hunter JH, Shaw RW. Vitrification of mouse oocytes using short cryoprotectant exposure: effects of varying exposure times on survival. Mol Reprod Dev. 1992;33:210–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Hunter JE, Fuller BJ, Bernard A, Jackson A, Shaw RW. Vitrification of human oocytes following minimal exposure to cryoprotectants; initial studies on fertilization and embryonic development. Hum Reprod. 1995;10:1184–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, Cha KY. Improved human oocyte development after vitrification: a comparison of thawing methods. Fertil Steril. 1999;72:142–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Chung HM, Hong SW, Lim JM, Lee SH, Cha WT, Ko JJ, Han SY, Choi DH, Cha KY. In vitro blastocyst formation of human oocytes obtained from unstimulated and stimulated cycles after vitrification at various maturational stages. Fertil Steril. 2000;73:545–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu J, Zhang L, Wang X. In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes. Reproduction. 2001;121:389–93.PubMedCrossRefGoogle Scholar
  44. 44.
    Yoon TK, Kim TJ, Park SE, Hong SW, Ko JJ, Chung HM, Cha KY, Lim JM, Han SY, Choi DH. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril. 2003;79:1323–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Kuwayama M, Vajta G, Ieda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online. 2005;11:608–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev. 2001;58:342–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Liebermann J, Tucker MJ, Sills ES. Cryoloop vitrification in assisted reproduction: analysis of survival rates in > 1000 human oocytes after ultra-rapid cooling with polymer augmented cryoprotectants. Clin Exp Obstet Gynecol. 2003;30:125–9.PubMedGoogle Scholar
  48. 48.
    Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH. Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod. 2003;18:137–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mukaida T, Nakamura S, Tomiyama T, Wada S, Oka C, Kasai M, Takahashi K. Vitrification of human blastocysts using cryoloops: clinical outcome of 223 cycles. Hum Reprod. 2003;18:384–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Cremades N, Sousa M, Silva J, Viana P, Sousa S, Oliveira C, Teixeira da Silva J, Barros A. Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes. Hum Reprod. 2004;19:300–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Hiraoka K, Hiraoka K, Kinutani M, Kinutani K. Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod. 2004;19:2884–8.. Epub 2004 Sep 2883PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Huang CC, Lee TH, Chen SU, Chen HH, Cheng TC, Liu CH, Yang YS, Lee MS. Successful pregnancy following blastocyst cryopreservation using super-cooling ultra-rapid vitrification. Hum Reprod. 2005;20:122–8.. Epub 2004 Oct 2007PubMedCrossRefGoogle Scholar
  53. 53.
    Isachenko V, Montag M, Isachenko E, Zaeva V, Krivokharchenko I, Shafei R, van der Ven H. Aseptic technology of vitrification of human pronuclear oocytes using open-pulled straws. Hum Reprod. 2005;20:492–6.. Epub 2004 Nov 2004PubMedCrossRefGoogle Scholar
  54. 54.
    Antinori M, Licata E, Dani G, Cerusico F, Versaci C, Antinori S. Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online. 2007;14:72–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C. Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology. 2000;40:110–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Bielanski A, Bergeron H, Lau PC, Devenish J. Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology. 2003;46:146–52.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bielanski A, Vajta G. Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod. 2009;24:2457–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Kuleshova LL, Shaw JM. A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum Reprod. 2000;15:2604–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Fahy GM. The relevance of cryoprotectant "toxicity" to cryobiology. Cryobiology. 1986;23:1–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Fahy GM, Lilley TH, Linsdell H, Douglas MS, Meryman HT. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology. 1990;27:247–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Liebermann J, Dietl J, Vanderzwalmen P, Tucker MJ. Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online. 2003;7:623–33.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vanderzwalmen P, Bertin G, Debauche C, Standaert V, van Roosendaal E, Vandervorst M, Bollen N, Zech H, Mukaida T, Takahashi K, Schoysman R. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod. 2002;17:744–51.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology. 2007;67:73–80.. Epub 2006 Oct 2020PubMedCrossRefGoogle Scholar
  64. 64.
    Stachecki J, Cohen J. S3 Vitrification system: a novel approach to blastocyst freezing. J Clin Embryol. 2008;11:5–14.Google Scholar
  65. 65.
    Stachecki JJ, Garrisi J, Sabino S, Caetano JP, Wiemer KE, Cohen J. A new safe, simple and successful vitrification method for bovine and human blastocysts. Reprod Biomed Online. 2008;17:360–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Schiewe MC, Zozula S, Anderson RE, Fahy GM. Validation of microSecure vitrification (muS-VTF) for the effective cryopreservation of human embryos and oocytes. Cryobiology. 2015;71:264–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Yokota Y, Sato S, Yokota M, Ishikawa Y, Makita M, Asada T, Araki Y. Successful pregnancy following blastocyst vitrification: case report. Hum Reprod. 2000;15:1802–3.PubMedCrossRefGoogle Scholar
  68. 68.
    Yokota Y, Sato S, Yokota M, Yokota H, Araki Y. Birth of a healthy baby following vitrification of human blastocysts. Fertil Steril. 2001;75:1027–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Reed ML, Lane M, Gardner DK, Jensen NL, Thompson J. Vitrification of human blastocysts using the cryoloop method: successful clinical application and birth of offspring. J Assist Reprod Genet. 2002;19:304–6.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K. Successful birth after transfer of vitrified human blastocysts with use of a cryoloop containerless technique. Fertil Steril. 2001;76:618–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Hiraoka K, Hiraoka K, Miyazaki M, Fukunaga E, Horiuchi T, Kusuda T, Okano S, Kinutani M, Kinutani K. Perinatal outcomes following transfer of human blastocysts vitrified at day 5, 6 and 7. J Exp Clin Assist Reprod. 2009;6:4.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Vanderzwalmen P, Bertin G, Debauche C, Standaert V, Bollen N, van Roosendaal E, Vandervorst M, Schoysman R, Zech N. Vitrification of human blastocysts with the Hemi-Straw carrier: application of assisted hatching after thawing. Hum Reprod. 2003;18:1504–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Vanderzwalmen P, Zech N, Greindl AJ, Ectors F, Lejeune B. Cryopreservation of human embryos by vitrificationGynecol Obstet Fertil. 2006;34:760–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Liebermann J. Vitrification of human blastocysts: an update. Reprod Biomed Online. 2009;19. Suppl 4:4328.PubMedCrossRefGoogle Scholar
  75. 75.
    Liebermann J. Vitrification of oocytes and embryos. In: Katkov II, editor. Current frontiers in cryobiology. Rijeka: InTech; 2012. p. 169–84.Google Scholar
  76. 76.
    Sparks AE. Human embryo cryopreservation-methods, timing, and other considerations for optimizing an embryo cryopreservation program. Semin Reprod Med. 2015;33:128–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Coello A, Campos P, Remohi J, Meseguer M, Cobo A. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J Assist Reprod Genet. 2016;33:413–21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mori C, Yabuuchi A, Ezoe K, Murata N, Takayama Y, Okimura T, Uchiyama K, Takakura K, Abe H, Wada K, Okuno T, Kobayashi T, Kato K. Hydroxypropyl cellulose as an option for supplementation of cryoprotectant solutions for embryo vitrification in human assisted reproductive technologies. Reprod Biomed Online. 2015;30:613–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Lane M, Maybach JM, Hooper K, Hasler JF, Gardner DK. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64:70–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Palasz A, Alkemade S, Mapletoft RJ. The use of sodium hyaluronate in freezing media for bovine and murine embryos. Cryobiology. 1993;30:172–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Suppl 3):148–59.. discussion 160PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gardner DK. Development of serum-free media for the culture and transfer of human blastocysts. Hum Reprod. 1998;13(Suppl 4):218–25.PubMedCrossRefGoogle Scholar
  83. 83.
    Schoolcraft WB. Importance of embryo transfer technique in maximizing assisted reproductive outcomes. Fertil Steril. 2016;105:855–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Gardner DK, Rodriegez-Martinez H, Lane M. Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum Reprod. 1999;14:2575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Roque M, Lattes K, Serra S, Sola I, Geber S, Carreras R, Checa MA. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril. 2013;99:156–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Roque M. Freeze-all policy: is it time for that? J Assist Reprod Genet. 2015;32:171–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Horcajadas JA, Diaz-Gimeno P, Pellicer A, Simon C. Uterine receptivity and the ramifications of ovarian stimulation on endometrial function. Semin Reprod Med. 2007;25:454–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Shapiro BS, Daneshmand ST, Desai J, Garner FC, Aguirre M, Hudson C. The risk of embryo-endometrium asynchrony increases with maternal age after ovarian stimulation and IVF. Reprod Biomed Online. 2016;33:50–5.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Efficacy of induced luteinizing hormone surge after "trigger" with gonadotropin-releasing hormone agonist. Fertil Steril. 2011;95:826–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96:344–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99:389–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer. Fertil Steril. 2014;102:3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29:286–90.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77 e361–369.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Coutifaris C. “Freeze only”–an evolving standard in clinical in vitro fertilization. N Engl J Med. 2016;375:577–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Franasiak JM, Ruiz-Alonso M, Scott RT, Simon C. Both slowly developing embryos and a variable pace of luteal endometrial progression may conspire to prevent normal birth in spite of a capable embryo. Fertil Steril. 2016;105:861–6.CrossRefGoogle Scholar
  97. 97.
    Meldrum DR. Introduction: examining the many potential reasons why euploid blastocysts do not always result in viable pregnancies: part 1. Fertil Steril. 2016;105:545–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Meldrum DR, de Ziegler D. Introduction: examining the many potential reasons why euploid blastocysts do not always result in viable pregnancies (and deliveries): part 2. Fertil Steril. 2016;105:841–3.PubMedCrossRefGoogle Scholar
  99. 99.
    Casper RF, Yanushpolsky EH. Optimal endometrial preparation for frozen embryo transfer cycles: window of implantation and progesterone support. Fertil Steril. 2016;105:867–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Fox C, Morin S, Jeong JW, Scott RT Jr, Lessey BA. Local and systemic factors and implantation: what is the evidence? Fertil Steril. 2016;105:873–84.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril. 1992;58:537–42.PubMedCrossRefGoogle Scholar
  102. 102.
    De Ziegler D, Fanchin R, Massonneau M, Bergeron C, Frydman R, Bouchard P. Hormonal control of endometrial receptivity. The egg donation model and controlled ovarian hyperstimulation. Ann N Y Acad Sci. 1994;734:209–20.PubMedCrossRefGoogle Scholar
  103. 103.
    de Ziegler D, Fanchin R, de Moustier B, Bulletti C. The hormonal control of endometrial receptivity: estrogen (E2) and progesterone. J Reprod Immunol. 1998;39:149–66.PubMedCrossRefGoogle Scholar
  104. 104.
    Paulson RJ. Hormonal induction of endometrial receptivity. Fertil Steril. 2011;96:530–5.CrossRefGoogle Scholar
  105. 105.
    Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81:1333–43.CrossRefGoogle Scholar
  106. 106.
    Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, Leppert PC. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82:1264–72.CrossRefGoogle Scholar
  107. 107.
    Gomaa H, Casper RF, Esfandiari N, Bentov Y. Non-synchronized endometrium and its correction in non-ovulatory cryopreserved embryo transfer cycles. Reprod Biomed Online. 2015;30:378–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Shapiro DB, Pappadakis JA, Ellsworth NM, Hait HI, Nagy ZP. Progesterone replacement with vaginal gel versus i.m. injection: cycle and pregnancy outcomes in IVF patients receiving vitrified blastocysts. Hum Reprod. 2015;29:1706–11.CrossRefGoogle Scholar
  109. 109.
    Kaser DJ, Ginsburg ES, Missmer SA, Correia KF, Racowsky C. Intramuscular progesterone versus 8% Crinone vaginal gel for luteal phase support for day 3 cryopreserved embryo transfer. Fertil Steril. 2012;98:1464–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Casper RF. Luteal phase support for frozen embryo transfer cycles: intramuscular or vaginal progesterone? Fertil Steril. 2014;101:627–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Kahraman S, Karagozoglu SH, Karlikaya G. The efficiency of progesterone vaginal gel versus intramuscular progesterone for luteal phase supplementation in gonadotropin-releasing hormone antagonist cycles: a prospective clinical trial. Fertil Steril. 2010;94:761–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Dal Prato L, Bianchi L, Cattoli M, Tarozzi N, Flamigni C, Borini A. Vaginal gel versus intramuscular progesterone for luteal phase supplementation: a prospective randomized trial. Reprod Biomed Online. 2008;16:361–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Yanushpolsky E, Hurwitz S, Greenberg L, Racowsky C, Hornstein M. Crinone vaginal gel is equally effective and better tolerated than intramuscular progesterone for luteal phase support in in vitro fertilization-embryo transfer cycles: a prospective randomized study. Fertil Steril. 2010;94:2596–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Leonard PH, Hokenstad AN, Khan Z, Jensen JR, Stewart EA, Coddington CC. Progesterone support for frozen embryo transfer: intramuscular versus vaginal suppository demonstrates no difference in a cohort. J Reprod Med. 2015;60:103–8.PubMedGoogle Scholar
  115. 115.
    van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2015:CD009154.Google Scholar
  116. 116.
    Cicinelli E, de Ziegler D, Bulletti C, Matteo MG, Schonauer LM, Galantino P. Direct transport of progesterone from vagina to uterus. Obstet Gynecol. 2000;95:403–6.Google Scholar
  117. 117.
    Nawroth F, Ludwig M. What is the ‘ideal’ duration of progesterone supplementation before the transfer of cryopreserved-thawed embryos in estrogen/progesterone replacement protocols? Hum Reprod. 2005;20:1127–34.PubMedCrossRefGoogle Scholar
  118. 118.
    Fanchin R, Righini C, Ayoubi JM, Olivennes F, de Ziegler D, Frydman R. [Uterine contractions at the time of embryo transfer: a hindrance to implantation?]. Contracept Fertil Sex 1998;26:498–505.Google Scholar
  119. 119.
    Fanchin R, Harmas A, Benaoudia F, Lundkvist U, Olivennes F, Frydman R. Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome. Fertil Steril. 1998;70:866–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Fanchin R, Righini C, de Ziegler D, Olivennes F, Ledee N, Frydman R. Effects of vaginal progesterone administration on uterine contractility at the time of embryo transfer. Fertil Steril. 2001;75:1136–40.PubMedCrossRefGoogle Scholar
  121. 121.
    Schiewe MC, Nugent N, Crawford ZS. Microsecure vitrification (μS-VTF) of mouse blastocysts. J Clin Embryol. 2010;13:33–51.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James J. Stachecki
    • 1
  1. 1.Innovative Cryo Enterprises LLCLindenUSA

Personalised recommendations