Advertisement

Predicting Embryo Developmental Potential and Viability Using Automated Time-Lapse Analysis (Eeva™ Test)

  • Lei Tan
  • Alice A. Chen
  • Shehua Shen
Chapter

Abstract

The objective of this chapter is to describe the development, validation, and practical application of the first noninvasive, embryo viability assessment tool that has been designed to meet clinical test criteria and proven to add critical information to the decision-making practices of clinical embryologists. In describing this novel test, we review the criteria for development and validation of a clinical test, assess the scientific underpinning of prediction using time-lapse imaging, and introduce new advances in automation enabled by state-of-the-art computer vision software.

Keywords

Time-lapse imaging Automation Embryo development Embryo selection Noninvasive Algorithm Clinical test 

Notes

Acknowledgments

We gratefully acknowledge the physicians, embryologists, and patients who participated in the development and validation studies of the Eeva Test. We also thank the clinical trial experts, biology scientists, and computer vision engineers, for their technical contributions and insightful discussions.

References

  1. 1.
    van Montfoort AP, Dumoulin JC, Land JA, et al. Elective single embryo transfer (eSET) policy in the first three IVF/ICSI treatment cycles. Hum Reprod. 2005;20:433–6.  https://doi.org/10.1093/humrep/deh619. deh619 [pii].CrossRefPubMedGoogle Scholar
  2. 2.
    Alpha E. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.  https://doi.org/10.1093/humrep/der037. der037 [pii].CrossRefGoogle Scholar
  3. 3.
    Racowsky C, Vernon M, Mayer J, et al. Standardization of grading embryo morphology. Fertil Steril. 2010;94:1152–3.  https://doi.org/10.1016/j.fertnstert.2010.05.042.CrossRefPubMedGoogle Scholar
  4. 4.
    Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006;86:1608–15.  https://doi.org/10.1016/j.fertnstert.2006.05.037. S0015-0282(06)03047-0 [pii].CrossRefPubMedGoogle Scholar
  5. 5.
    Montag M, Liebenthron J, Koster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011;  https://doi.org/10.1016/j.placenta.2011.07.009. S0143-4004(11)00266-9 [pii].CrossRefGoogle Scholar
  6. 6.
    Paternot G, Devroe J, Debrock S, et al. Intra- and inter-observer analysis in the morphological assessment of early-stage embryos. Reprod Biol Endocrinol. 2009;7:105.  https://doi.org/10.1186/1477-7827-7-105.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Munné S, Tomkin G, Cohen J. Selection of embryos by morphology is less effective than by a combination of aneuploidy testing and morphology observations. Fertil Steril. 2009;91:943–5.  https://doi.org/10.1016/j.fertnstert.2007.06.082.CrossRefPubMedGoogle Scholar
  8. 8.
    Kroener L, Ambartsumyan G, Briton-Jones C, et al. The effect of timing of embryonic progression on chromosomal abnormality. Fertil Steril. 2012;98:876–80.  https://doi.org/10.1016/j.fertnstert.2012.06.014.CrossRefPubMedGoogle Scholar
  9. 9.
    Alfarawati S, Fragouli E, Colls P, et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95:520–4.  https://doi.org/10.1016/j.fertnstert.2010.04.003. S0015-0282(10)00600-X [pii].CrossRefPubMedGoogle Scholar
  10. 10.
    Harper J, Cristina Magli M, Lundin K, et al. When and how should new technology be introduced into the IVF laboratory? Hum Reprod. 2012;27:303–13.  https://doi.org/10.1093/humrep/der414.CrossRefPubMedGoogle Scholar
  11. 11.
    Palmer SS, Barnhart KT. Biomarkers in reproductive medicine: the promise, and can it be fulfilled? Fertil Steril. 2012;13:2431–4.Google Scholar
  12. 12.
    Feero WG, Guttmacher AE, Bodurtha J, Strauss JF. Genomics and perinatal care. N Engl J Med. 2012;366:64–73.  https://doi.org/10.1056/NEJMra1105043.CrossRefGoogle Scholar
  13. 13.
    Kucher N. Deep-vein thrombosis of the upper extremities. N Engl J Med. 2011;364:861–9.  https://doi.org/10.1056/NEJMcp1008740.CrossRefPubMedGoogle Scholar
  14. 14.
    Simpson JL. Cell-free fetal DNA and maternal serum analytes for monitoring embryonic and fetal status. Fertil Steril. 2013;99:1124–34.  https://doi.org/10.1016/j.fertnstert.2013.02.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Hardarson T, Ahlstrom A, Rogberg L, et al. Non-invasive metabolomic profiling of day 2 and 5 embryo culture medium: a prospective randomized trial. Hum Reprod. 2012;27:89–96.  https://doi.org/10.1093/humrep/der373.CrossRefPubMedGoogle Scholar
  16. 16.
    Vergouw CG, Kieslinger DC, Kostelijk EH, et al. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: a randomized controlled trial. Hum Reprod. 2012;27:2304.  https://doi.org/10.1093/humrep/des175.CrossRefPubMedGoogle Scholar
  17. 17.
    Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16:513–30.  https://doi.org/10.1093/molehr/gaq041.CrossRefPubMedGoogle Scholar
  18. 18.
    Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16:715–25.CrossRefGoogle Scholar
  19. 19.
    Wathlet S, Adriaenssens T, Segers I, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril. 2012;98:432.  https://doi.org/10.1016/j.fertnstert.2012.05.007.CrossRefGoogle Scholar
  20. 20.
    Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27:1277–85.  https://doi.org/10.1093/humrep/des079. des079 [pii].CrossRefPubMedGoogle Scholar
  21. 21.
    Wong CC, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod Biomed Online. 2012;26:120.  https://doi.org/10.1016/j.rbmo.2012.11.003.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen AA, Tan L, Suraj V, et al. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril. 2013;99:1035–43.  https://doi.org/10.1016/j.fertnstert.2013.01.143.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang Z, Liu J, Collins GS, et al. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5:24.  https://doi.org/10.1186/1755-8166-5-24.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Forman EJ, Upham KM, Cheng M, et al. Comprehensive chromosome screening alters traditional morphology-based embryo selection: a prospective study of 100 consecutive cycles of planned fresh euploid blastocyst transfer. Fertil Steril. 2013;100:718–24.  https://doi.org/10.1016/j.fertnstert.2013.04.043.CrossRefPubMedGoogle Scholar
  25. 25.
    Ochodo EA, Bossuyt PM. Reporting the accuracy of diagnostic tests: the STARD initiative 10 years on. Clin Chem. 2013;59:917–9.  https://doi.org/10.1373/clinchem.2013.206516.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mio Y, Maeda K. Time-lapse cinematography of dynamic changes occurring during in vitro development of human embryos. Am J Obs Gynecol. 2008;199:660 e1–5.  https://doi.org/10.1016/j.ajog.2008.07.023. S0002-9378(08)00805-3 [pii].CrossRefGoogle Scholar
  27. 27.
    Meseguer M, Herrero J, Tejera A, et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.  https://doi.org/10.1093/humrep/der256. der256 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vajta G, Peura TT, Holm P, et al. New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol Reprod Dev. 2000;55:256–64.  https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<256::AID-MRD3>3.0.CO;2-7. [pii] 10.1002/(SICI)1098-2795(200003)55:3<256::AID-MRD3>3.0.CO;2-7.CrossRefPubMedGoogle Scholar
  29. 29.
    Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.  https://doi.org/10.1038/nbt.1686. nbt.1686 [pii].CrossRefGoogle Scholar
  30. 30.
    Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.  https://doi.org/10.1038/ncomms2249.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Conaghan J, Chen AA, Willman SP, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100:412–9.e5.  https://doi.org/10.1016/j.fertnstert.2013.04.021.CrossRefPubMedGoogle Scholar
  32. 32.
    Martini E, Flaherty SP, Swann NJ, et al. Analysis of unfertilized oocytes subjected to intracytoplasmic sperm injection using two rounds of fluorescence in-situ hybridization and probes to five chromosomes. Hum Reprod. 1997;12:2011–8.CrossRefGoogle Scholar
  33. 33.
    Hardarson T, Lofman C, Coull G, et al. Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online. 2002;5:36–8.CrossRefGoogle Scholar
  34. 34.
    Pribenszky C, Matyas S, Kovacs P, et al. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod Biomed Online. 2010;21:533–6.  https://doi.org/10.1016/j.rbmo.2010.04.015. S1472-6483(10)00227-0 [pii].CrossRefPubMedGoogle Scholar
  35. 35.
    Cruz M, Garrido N, Herrero J, et al. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online. 2012;25:371–81.  https://doi.org/10.1016/j.rbmo.2012.06.017.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hlinka D, Kalatova B, Uhrinova I, et al. Time-lapse cleavage rating predicts human embryo viability. Physiol Res. 2012;61:513–25.PubMedGoogle Scholar
  37. 37.
    Rubio I, Kuhlmann R, Agerholm I, et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril. 2012;98:1458–63.CrossRefGoogle Scholar
  38. 38.
    Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97:332–7.  https://doi.org/10.1016/j.fertnstert.2011.11.042. S0015-0282(11)02818-4 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Munoz M, Cruz M, Humaidan P, et al. Dose of recombinant FSH and oestradiol concentration on day of HCG affect embryo development kinetics. Reprod Biomed Online. 2012;25:382–9.CrossRefGoogle Scholar
  40. 40.
    Dal Canto M, Coticchio G, Mignini Renzini M, et al. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online. 2012;25:474–80.CrossRefGoogle Scholar
  41. 41.
    Ciray HN, Aksoy T, Goktas C, et al. Time-lapse evaluation of human embryo development in single versus sequential culture media-a sibling oocyte study. J Assist Reprod Genet. 2012;29:891.  https://doi.org/10.1007/s10815-012-9818-7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Basile N, Morbeck D, Garcia-Velasco J, et al. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28:634–41.  https://doi.org/10.1093/humrep/des462.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ingerslev H, Hindkjaer J, Kirkegaard K. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Hum Reprod. 2013;99:738–27. (suppl:ii22–ii24).Google Scholar
  44. 44.
    Vera-Rodriguez M, Chavez SL, Rubio C, et al. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat Commun. 2015;6:7601.  https://doi.org/10.1038/ncomms8601.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Krause W, Viethen G. Quality assessment of computer-assisted semen analysis (CASA) in the andrology laboratory. Andrologia. 1999;31:125–9.CrossRefGoogle Scholar
  46. 46.
    Dziura B, Quinn S, Richard K. Performance of an imaging system vs. manual screening in the detection of squamous intraepithelial lesions of the uterine cervix. Acta Cytol. 2006;50:309–11.CrossRefGoogle Scholar
  47. 47.
    Lozano R. Comparison of computer-assisted and manual screening of cervical cytology. Gynecol Oncol. 2007;104:134–8.  https://doi.org/10.1016/j.ygyno.2006.07.025.CrossRefPubMedGoogle Scholar
  48. 48.
    Filho ES, Noble JA, Wells D. A review on automatic analysis of human embryo microscope images. Open Biomed Eng J. 2010;4:170–7.  https://doi.org/10.2174/1874120701004010170.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Filho ES, Noble JA, Poli M, et al. A method for semi-automatic grading of human blastocyst microscope images. Hum Reprod. 2012;27:2641.  https://doi.org/10.1093/humrep/des219.CrossRefGoogle Scholar
  50. 50.
    Swann K, Windsor S, Campbell K, et al. Phospholipase C-zeta-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril. 2012;97:742–7.  https://doi.org/10.1016/j.fertnstert.2011.12.013. S0015-0282(11)02865-2 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Papanikolaou EG, D’Haeseleer E, Verheyen G, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005;20:3198–203.  https://doi.org/10.1093/humrep/dei217. dei217 [pii].CrossRefPubMedGoogle Scholar
  52. 52.
    Papanikolaou EG, Camus M, Kolibianakis EM, et al. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006;354:1139–46.  https://doi.org/10.1056/NEJMoa053524. 354/11/1139 [pii].CrossRefPubMedGoogle Scholar
  53. 53.
    Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007:CD002118.  https://doi.org/10.1002/14651858.CD002118.pub3.
  54. 54.
    Kallen B, Finnstrom O, Lindam A, et al. Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril. 2010;94:1680–3.  https://doi.org/10.1016/j.fertnstert.2009.12.027. S0015-0282(09)04213-7 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kalra SK, Ratcliffe SJ, Barnhart KT, Coutifaris C. Extended embryo culture and an increased risk of preterm delivery. Obstet Gynecol. 2012;120:69–75.  https://doi.org/10.1097/AOG.0b013e31825b88fc.CrossRefPubMedGoogle Scholar
  56. 56.
    Diamond MP, Willman S, Chenette P, Cedars MI. The clinical need for a method of identification of embryos destined to become a blastocyst in assisted reproductive technology cycles. J Assist Reprod Genet. 2012;29:391–6.  https://doi.org/10.1007/s10815-012-9732-z.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Diamond MP, Suraj V, Behnke EJ, et al. Using the Eeva test™ adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet. 2015;32:61–8.  https://doi.org/10.1007/s10815-014-0366-1.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Meseguer M, Rubio I, Cruz M, et al. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–1489.e10.CrossRefGoogle Scholar
  59. 59.
    VerMilyea MD, Tan L, Anthony JT, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-Centre study. Reprod Biomed Online. 2014;29:729–36.  https://doi.org/10.1016/j.rbmo.2014.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kirkegaard K, Campbell A, Agerholm I, et al. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod Biomed Online. 2014;29:156–8.  https://doi.org/10.1016/j.rbmo.2014.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kieslinger DC, De Gheselle S, Lambalk CB, et al. Embryo selection using time-lapse analysis (early embryo viability assessment) in conjunction with standard morphology: a prospective two-center pilot study. Hum Reprod. 2016;31:2450–7.  https://doi.org/10.1093/humrep/dew207.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Aparicio-Ruiz B, Basile N, Pérez Albalá S, et al. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril. 2016;106:1379–1385.e10.  https://doi.org/10.1016/j.fertnstert.2016.07.1117.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Adamson GD, Abusief ME, Palao L, et al. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse–enabled test to aid in embryo selection. Fertil Steril. 2016;105:369–375.e6.  https://doi.org/10.1016/j.fertnstert.2015.10.030.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lei Tan
    • 1
  • Alice A. Chen
    • 2
  • Shehua Shen
    • 3
  1. 1.Celmatix, Inc.New YorkUSA
  2. 2.GRAIL, Inc.Menlo ParkUSA
  3. 3.Hernest Institute for Reproductive MedicineSunnyvaleUSA

Personalised recommendations