Magnetic Activated Cell Sorting of Human Spermatozoa

  • Enver Kerem Dirican


Magnetic separation has been successfully applied to many aspects of both biomedical and biological research and also in clinical areas like cellular therapies for human autoimmune diseases, like rheumatoid arthritis, diabetes, multiple sclerosis, and systemic lupus erythematosus, and nucleic acid transfer as a transfection method to optimize conditions for virus-mediated gene delivery (therapy) by magnetofection. In the last decade, several studies have been carried out on the use of magnetic cell sorting in human reproduction, for decontamination of testicular cell suspensions in cancer patients and for elimination of apoptotic spermatozoa from human semen samples.


Spermatozoa Assisted reproduction Apoptosis Cell sorting Sperm selection 


  1. 1.
    Apel M, UAO H, Miltenyi S, et al. Magnetic cell separation for research and clinical applications. In: Andrä W, Nowak H, editors. Magnetism in medicine: a handbook. 2nd ed. Weinheim: Wiley-Vch; 2007. p. 571.Google Scholar
  2. 2.
    Lande R, Giacomini E, Serafini B, et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol. 2004;173:2815–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Cipolletta C, Ryan KE, Hanna EV, et al. Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes. 2005;54(9):2779–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. P Natl Acad Sci USA. 2006;103(15):5941–6.CrossRefGoogle Scholar
  5. 5.
    Köller M, Zwölfer B, Steiner G, et al. Phenotypic and functional deficiencies of monocyte-derived dendritic cells in systemic lupus erythematosus (SLE) patients. Int Immunol. 2004;16(11):1595–604.PubMedCrossRefGoogle Scholar
  6. 6.
    Plank C, Schillinger U, Scherer F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem. 2003;384:737–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Xenariou S, Griesenbach U, Ferrari S, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo: magnetofection in the mouse nose. Gene Ther. 2006;13:1545–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Geens M, Van de Velde H, De Block G, et al. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod. 2007;22(3):733–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Paasch U, Grunewald S, Fitzl G, et al. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl. 2003;24(2):246–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Paasch U, Grunewald S, Agarwal A, et al. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81(SUPPL1):802–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Said TM, Agarwal A, Grunewald S, et al. Evaluation of sperm recovery following annexin V magnetic-activated cell sorting separation. Reprod Biomed Online. 2006;13(3):336–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Chohan KR, Griffin JT, Lafromboise M, et al. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27(1):53–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Manicardi GC, Bianchi PG, Pantano S, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Sakkas D, Moffatt O, Manicardi GC, et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Cocuzza M, Sikka SC, Athayde KS, et al. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol. 2007;33(5):603–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Uzunhisarcikli M, Kalender Y, Dirican K, et al. Acute, subacute and subchronic administration of methyl parathion-induced testicular damage in male rats and protective role of vitamins C and E. Pestic Biochem Phys. 2007;87:115–22.CrossRefGoogle Scholar
  17. 17.
    Saleh RA, Agarwal A, Nada EA, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.PubMedCrossRefGoogle Scholar
  18. 18.
    Agarwal A, Desai N, Makker K, et al. Effects of radiofrequency electromagnetic waves (FR-EMV) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Cinar C, Yazici C, Ergünsu S, et al. Genetic diagnosis in infertile men with numerical and constitutional sperm abnormalities. Genet Test. 2008;12(2):195–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Dubey A, Dayal MB, Frankfurter D, et al. The influence of sperm morphology on preimplantation genetic diagnosis cycles outcome. Fertil Steril. 2008;89(6):1665–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Kirkpatrick G, Ferguson KA, Gao H, et al. A comparison of sperm aneuploidy rates between infertile men with normal and abnormal karyotypes. Hum Reprod. 2008;23(7):1679–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Huzsar G, Vigue L. Correlation between the rate of lipid peroxidation and cellular maturity as measured by creatine kinase activity in human spermatozoa. J Androl. 1994;15:71–7.Google Scholar
  23. 23.
    Aziz N, Said T, Paasch U, et al. The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod. 2007;22(5):1413–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Sakkas D, Seli E. Sperm DNA and embryo development. In: Elder K, Cohen J, editors. Human preimplantation embryo selection. London: Informa Healthcare; 2007. p. 325–35.CrossRefGoogle Scholar
  25. 25.
    Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Ashgar W, Velasco V, Kingsley JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Health Mater. 2014;3(10):1–18.Google Scholar
  27. 27.
    Bartoov B, Berkovitz A, Eltes F. Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med. 2001;345(14):1067–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Huzsar G, Ozenci CC, Cayli S, et al. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003;79(Suppl 3):1616–24.Google Scholar
  29. 29.
    Simon L, Murphy K, Aston K, et al. Micro-electrophoresis: a noninvasive method of sperm selection based on membrane charge. Fertil Steril. 2015;103(2):361–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang X. Apoptosis. In: Alberts B, Johnson A, Lewis J, et al. edtiors. Molecular biology of the cell. 5th ed. New York, NY: Garland Sci; 2008. p. 1115–30.Google Scholar
  31. 31.
    Dirican EK, Ozgun OD, Akarsu S, et al. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Gen. 2008;25(8):375–81.CrossRefGoogle Scholar
  32. 32.
    Grunewald S, Baumann T, Paasch U, et al. Capacitation and acrosome reaction in nonapoptotic human spermatozoa. Ann N Y Acad Sci. 2006;1090:138–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Soc Reprod Fertil. 2007;65:515–25.Google Scholar
  34. 34.
    Said TM, Agarwal A, Zborowski M, et al. Utility of magnetic separation as a molecular sperm preparation technique. J Androl. 2008;29(2):134–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Hipler UC, Schreiber G, Wollina U. Reactive oxygen species in human semen: investigations and measurements. Arch Androl. 1998;40(1):67–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Glander HJ, Schiller J, Süß R, et al. Deterioration of spermatozoa plasma membrane is associated with an increase of sperm lyso-phosphatidylcholines. Andrologia. 2002;34(6):360–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Winkle T, Gagsteiger F, Ditzel N. Reduction of apoptotic spermatozoa within the ejaculate by means of the MACS system. Journal fur Fertilitat und Reproduktion. 2007;17(1):19–21.Google Scholar
  38. 38.
    Grunewald S, Miska W, Miska G, et al. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007;22(5):1405–12.PubMedCrossRefGoogle Scholar
  39. 39.
    de Vantéry AC, Lucas H, Chardonnens D, et al. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reprod Biol Endocrin. 2009;7:1.CrossRefGoogle Scholar
  40. 40.
    Vendrell X, Ferrer M, Garcia-Mengual E, et al. Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients. Reprod Biomed Online. 2014;28:492–502.PubMedCrossRefGoogle Scholar
  41. 41.
    Delbes G, Herrero MB, Troeung ET, et al. The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting. Andrology. 2013;1:698–706.PubMedCrossRefGoogle Scholar
  42. 42.
    Paasch U, Grunewald S, Glander HJ. Transduction of apoptotic signals in ejaculated spermatozoa after cryopreservation via activation of caspases. Journal fur Fertilitat und Reproduktion. 2003;13(2):22–31.Google Scholar
  43. 43.
    Paasch U, Grunewald S, Wuendrich K, et al. Immunomagnetic removal of cryo-damaged human spermatozoa. Asian J Androl. 2005;7(1):61–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Grunewald S, Paasch U, Said TM, et al. Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell Tissue Bank. 2006;7(2):99–104.PubMedCrossRefGoogle Scholar
  45. 45.
    Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction: an in vitro model. Biol Reprod. 2006;74(3):530–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Grunewald S, Reinhardt M, Blumenauer V, et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009;92(2):572–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee TH, Liu CH, Shih YT, et al. Magnetic-activated cell sorting for human sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 2010;25(4):839–46.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoogendijk CF, Kruger TF, Bouic PJ, et al. A novel approach for the selection of human sperm using annexin V-binding and flow cytometry. Fertil Steril. 2009;91(4):1285–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Dirican EK, Vicdan K, Işık AZ, et al. [Results of the microinjection treatments after eliminating apoptotic spermatozoa] (Article in Turkish: Apoptotik spermlerin elimine edilmesi ile uygulanan mikroenjeksiyon tedavilerinin sonuçları.) 2nd. Natl Cong Reprod Endocrinol Infertility. 2006;SS-18:222–3.Google Scholar
  50. 50.
    Kahraman S, Polat G, Samli M, et al. Multiple pregnancies obtained by testicular spermatid injection in combination with intracytoplasmic sperm injection. Hum Reprod. 1998;13(1):104–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Balaban B, Yakin K, Urman B, et al. Pronuclear morphology predicts embryo development and chromosome constitution. Reprod Biomed Online. 2004;8(6):695–700.PubMedCrossRefGoogle Scholar
  52. 52.
    Farfalli VI, Magli MC, Ferraretti AP, et al. Role of aneuploidy on embryo implantation. Gynecol Obstet Investig. 2007;64(3):161–5.CrossRefGoogle Scholar
  53. 53.
    Sakkas D, Seli E, Bizzaro D, et al. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodeling during spermatogenesis. Reprod Biomed Online. 2003;7(4):428–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Rawe VY, Alvarez CR, Uriondo HW, et al. ICSI outcome using annexin V columns to select non-apoptotic spermatozoa. ASRM. 2009;O-250:S73–4.Google Scholar
  56. 56.
    Rawe VY, Boudri HU, Sedó CA, et al. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20:320–3.PubMedCrossRefGoogle Scholar
  57. 57.
    Herrero MB, Delbes G, Chung JT, et al. Case report: the use of annexin V coupled with magnetic activated cell sorting in cryopreserved spermatozoa from a male cancer survivor: healthy twin newborns after two previous ICSI failures. J Assist Reprod Genet. 2013;30:1415–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lukaszuk K, Wcislo M, Liss J, et al. First pregnancy, somatic and psychological status of a 4-year-old child born following Annexin V TESA sperm separation. Am J Perinatol Rep. 2015;5:e105–8.CrossRefGoogle Scholar
  59. 59.
    Troya J, Zorilla I. Annexin V-MACS in infertile couples as method for separation of sperm without DNA fragmentation. JBRA. 2015;19(2):66–9.Google Scholar
  60. 60.
    McDowell S, Kroon B, Ford E, et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev. 2014;10:1–27.Google Scholar
  61. 61.
    Romany L, Garrido N, Cobo A, et al. Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 2017;34(2):201–7. Scholar
  62. 62.
    Gil M, Sar-Shalom V, Sivira YM, et al. Sperm selection using magnetic activated cell sorting (MACS) is assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 2013;30:479–85.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Romany L, Garrido N, Motato Y, et al. Removal of annexin V–positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014;102(6):1567–75.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Enver Kerem Dirican
    • 1
  1. 1.Obstetrics and Gynecology, Center for Assisted ReproductionAkdeniz University, Faculty of MedicineAntalyaTurkey

Personalised recommendations