Cranial Nerve Palsies, Vascular Damage, and Brainstem Injury

  • Aryavarta M. S. Kumar
  • Simon S. LoEmail author


Balancing the therapeutic index for radiation therapy to the brain starts with treatment planning and reducing the dose to adjacent critical structures. History taking, clinical examination, and imaging are critical to the diagnosis of complications. Radiation-induced optic neuropathy, cranial nerve palsies, vascular injury, and brainstem injury can all occur and result in permanent deficits for patients several months after radiation therapy is complete. Treatment is largely focused on using steroids although hyperbaric oxygen and other treatments have also been attempted with limited success. Radiation planning guidelines continue to evolve as does our understanding of the longer-term complications that can result.


Radiation-induced cranial nerve palsies Brainstem injury Cranial nerve deficit Vascular damage 


  1. 1.
    Witt TC. Stereotactic radiosurgery for pituitary tumors. Neurosurg Focus. 2003;14(5):e10.PubMedCrossRefGoogle Scholar
  2. 2.
    Loeffler JS, Shih HA. Radiation therapy in the management of pituitary adenomas. J Clin Endocrinol Metab. 2011;96(7):1992–2003.PubMedCrossRefGoogle Scholar
  3. 3.
    Spiegelmann R, Cohen ZR, Nissim O, et al. Cavernous sinus meningiomas: a large LINAC radiosurgery series. J Neurooncol. 2010;98(2):195–202.PubMedCrossRefGoogle Scholar
  4. 4.
    Kondziolka D, Lunsford LD, McLaughlin MR, et al. Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med. 1998;339(20):1426–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Petit JH, Hudes RS, Chen TT, et al. Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery. 2001;49(6):1299–306. discussion 306-7PubMedCrossRefGoogle Scholar
  6. 6.
    Murphy ES, Suh JH. Radiotherapy for vestibular schwannomas: a critical review. Int J Radiat Oncol Biol Phys. 2011;79(4):985–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Flickinger JC, Kondziolka D, Niranjan A, et al. Acoustic neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys. 2004;60(1):225–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang X, Liu X, Mei G, et al. Phase II study to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Int J Radiat Oncol Biol Phys. 2012;83(2):e223–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Song DY, Williams JA. Fractionated stereotactic radiosurgery for treatment of acoustic neuromas. Stereotact Funct Neurosurg. 1999;73(1-4):45–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Morimoto M, Yoshioka Y, Kotsuma T, et al. Hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannoma. Jpn J Clin Oncol. 2013;43(8):805–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Karam SD, Tai A, Strohl A, et al. Frameless fractionated stereotactic radiosurgery for vestibular schwannomas: a single-institution experience. Front Oncol. 2013;3:121.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chon H, Yoon K, Kwon DH, et al. Hypofractionated stereotactic radiosurgery for pituitary metastases. J Neurooncol. 2017;132(1):127–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Fattah AY, Gurusinghe AD, Gavilan J, et al. Facial nerve grading instruments: systematic review of the literature and suggestion for uniformity. Plast Reconstr Surg. 2015;135(2):569–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Weber DC, Chan AW, Bussiere MR, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery. 2003;53(3):577–86. discussion 86-8PubMedCrossRefGoogle Scholar
  15. 15.
    Putz F, Muller J, Wimmer C, et al. Stereotactic radiotherapy of vestibular schwannoma: hearing preservation, vestibular function, and local control following primary and salvage radiotherapy. Strahlenther Onkol. 2017;193(3):200–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Tsai JT, Lin JW, Lin CM, et al. Clinical evaluation of CyberKnife in the treatment of vestibular schwannomas. Biomed Res Int. 2013;2013:297093.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vivas EX, Wegner R, Conley G, et al. Treatment outcomes in patients treated with CyberKnife radiosurgery for vestibular schwannoma. Otol Neurotol. 2014;35(1):162–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Meijer OW, Vandertop WP, Baayen JC, et al. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys. 2003;56(5):1390–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Guss ZD, Batra S, Limb CJ, et al. Radiosurgery of glomus jugulare tumors: a meta-analysis. Int J Radiat Oncol Biol Phys. 2011;81(4):e497–502.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ivan ME, Sughrue ME, Clark AJ, et al. A meta-analysis of tumor control rates and treatment-related morbidity for patients with glomus jugulare tumors. J Neurosurg. 2011;114(5):1299–305.PubMedCrossRefGoogle Scholar
  21. 21.
    Ibrahim R, Ammori MB, Yianni J, et al. Gamma knife radiosurgery for glomus jugulare tumors: a single-center series of 75 cases. J Neurosurg. 2017;126(5):1488–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Chun SG, Nedzi LA, Choe KS, et al. A retrospective analysis of tumor volumetric responses to five-fraction stereotactic radiotherapy for paragangliomas of the head and neck (glomus tumors). Stereotact Funct Neurosurg. 2014;92(3):153–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Schuster D, Sweeney AD, Stavas MJ, et al. Initial radiographic tumor control is similar following single or multi-fractionated stereotactic radiosurgery for jugular paragangliomas. Am J Otolaryngol. 2016;37(3):255–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Desai SS, Paulino AC, Mai WY, et al. Radiation-induced moyamoya syndrome. Int J Radiat Oncol Biol Phys. 2006;65(4):1222–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Killory BD, Kresl JJ, Wait SD, et al. Hypofractionated CyberKnife radiosurgery for perichiasmatic pituitary adenomas: early results. Neurosurgery. 2009;64(2 Suppl):A19–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Nguyen JH, Chen CJ, Lee CC, et al. Multisession gamma knife radiosurgery: a preliminary experience with a noninvasive, relocatable frame. World Neurosurg. 2014;82(6):1256–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang X, Zhu H, Knisely J, et al. Hypofractionated stereotactic radiosurgery: a new treatment strategy for giant cavernous sinus hemangiomas. J Neurosurg. 2018;128(1):60–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Xue J, Goldman HW, Grimm J, et al. Dose-volume effects on brainstem dose tolerance in radiosurgery. J Neurosurg. 2012;117(Suppl):189–96.PubMedGoogle Scholar
  30. 30.
    Clark BG, Souhami L, Pla C, et al. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1998;40(3):667–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys. 2010;37(8):4078–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Gorgulho A, De Salles AA, McArthur D, et al. Brainstem and trigeminal nerve changes after radiosurgery for trigeminal pain. Surg Neurol. 2006;66(2):127–35. discussion 35PubMedCrossRefGoogle Scholar
  33. 33.
    King AD, Ahuja AT, Yeung DK, et al. Delayed complications of radiotherapy treatment for nasopharyngeal carcinoma: imaging findings. Clin Radiol. 2007;62(3):195–203.PubMedCrossRefGoogle Scholar
  34. 34.
    Matsumoto H, Minami H, Yamaura I, et al. Radiation-induced cerebral aneurysm treated with endovascular coil embolization. A case report. Interv Neuroradiol. 2014;20(4):448–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Li YC, Chen FP, Zhou GQ, et al. Incidence and dosimetric parameters for brainstem necrosis following intensity modulated radiation therapy in nasopharyngeal carcinoma. Oral Oncol. 2017;73:97–104.PubMedCrossRefGoogle Scholar
  36. 36.
    Kondziolka D, Lacomis D, Niranjan A, et al. Histological effects of trigeminal nerve radiosurgery in a primate model: implications for trigeminal neuralgia radiosurgery. Neurosurgery. 2000;46(4):971–6. discussion 6-7PubMedGoogle Scholar
  37. 37.
    Szeifert GT, Salmon I, Lorenzoni J, et al. Pathological findings following trigeminal neuralgia radiosurgery. Prog Neurol Surg. 2007;20:244–8.PubMedGoogle Scholar
  38. 38.
    Brant-Zawadzki M, Anderson M, DeArmond SJ, et al. Radiation-induced large intracranial vessel occlusive vasculopathy. AJR Am J Roentgenol. 1980;134(1):51–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Tonomura S, Shimada K, Funatsu N, et al. Pathologic findings of symptomatic carotid artery stenosis several decades after radiation therapy. J Stroke Cerebrovasc Dis. 2018;27(3):e39–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Maher CO, Pollock BE. Radiation induced vascular injury after stereotactic radiosurgery for trigeminal neuralgia: case report. Surg Neurol. 2000;54(2):189–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Sloan AE, Arnold SM, St Clair WH, et al. Brain injury: current management and investigations. Semin Radiat Oncol. 2003;13(3):309–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Delishaj D, Ursino S, Pasqualetti F, et al. Bevacizumab for the treatment of radiation-induced cerebral necrosis: a systematic review of the literature. J Clin Med Res. 2017;9(4):273–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyLouis Stokes Cleveland VA Medical CenterClevelandUSA
  2. 2.Department of Radiation OncologyUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations