Advertisement

Adult Medulloblastoma

  • Anthony Pham
  • Kenneth Wong
  • Eric L. Chang
Chapter

Abstract

Medulloblastoma is a highly cellular malignant embryonal neoplasm of the cerebellum that is more common in children than adults. The incidence in adults is approximately 0.6–1 cases per million. Patients with medulloblastoma demonstrate a combination of signs and symptoms caused by increased intracranial pressure and cerebellar dysfunction that evolve over a period of weeks to a few months. Standard staging procedures include diagnostic imaging with MRI of the brain and spine as well as CSF fluid cytology. Medulloblastomas are staged by the Chang staging system into average-risk and high-risk patients based on the extent of residual disease or presence of metastatic disease (M-positive disease). Though previously classified histologically, the latest WHO classification has incorporated molecular characteristics to stratify medulloblastoma into four subtypes (WNT-activated, SHH-activated TP53-wt, SHH-activated TP53mut, non-SHH/non-WNT (groups 3 and 4)). Adult patients with medulloblastoma are frequently treated according to various pediatric protocols. The combination of surgery, craniospinal irradiation, and posterior fossa boost irradiation and chemotherapy in concurrent and adjuvant settings has been shown to be viable in both retrospective and prospective studies.

Keywords

Medulloblastoma Adult Prognostic factors Molecular classification Craniospinal axis irradiation Chemotherapy 

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.  https://doi.org/10.1007/s00401-016-1545-1.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19(11):1541–4.  https://doi.org/10.1016/j.jocn.2012.04.009.CrossRefPubMedGoogle Scholar
  3. 3.
    Verdecchia A, Francisci S, Brenner H, et al. Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol. 2007;8(9):784–96.  https://doi.org/10.1016/S1470-2045(07)70246-2.CrossRefPubMedGoogle Scholar
  4. 4.
    Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15(Suppl 2):ii1–ii56.  https://doi.org/10.1093/NEUONC/NOT151.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peris-Bonet R, Martínez-García C, Lacour B, et al. Childhood central nervous system tumours – incidence and survival in Europe (1978–1997): report from Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42(13):2064–80.  https://doi.org/10.1016/j.ejca.2006.05.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Shore RE, Moseson M, Harley N, et al. Tumors and other diseases following childhood X-ray treatment for ringworm of the scalp (Tinea capitis). Health Phys. 2003;85(4):404–8. http://www.ncbi.nlm.nih.gov/pubmed/13678280. Accessed 27 Aug 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Armstrong GT, Liu Q, Yasui Y, et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2009;101(13):946–58.  https://doi.org/10.1093/jnci/djp148.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Taylor AJ, Little MP, Winter DL, et al. Population-based risks of CNS tumors in survivors of childhood cancer: the British childhood cancer survivor study. J Clin Oncol. 2010;28(36):5287–93.  https://doi.org/10.1200/JCO.2009.27.0090.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ellison DW, Clifford SC, Gajjar A, et al. What’s new in neuro-oncology? Recent advances in medulloblastoma. Eur J Paediatr Neurol. 2003;7(2):53–66. http://www.ncbi.nlm.nih.gov/pubmed/12697428. Accessed 26 Nov 2016CrossRefPubMedGoogle Scholar
  10. 10.
    Amlashi SFA, Riffaud L, Brassier G, et al. Nevoid basal cell carcinoma syndrome: relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer. 2003;98(3):618–24.  https://doi.org/10.1002/cncr.11537.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith MJ, Beetz C, Williams SG, et al. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J Clin Oncol. 2014;32(36):4155–61.  https://doi.org/10.1200/JCO.2014.58.2569.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839–47.  https://doi.org/10.1056/NEJM199503303321302.CrossRefPubMedGoogle Scholar
  13. 13.
    Vasen HFA, Möslein G, Alonso A, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut. 2008;57(5):704–13.  https://doi.org/10.1136/gut.2007.136127.CrossRefPubMedGoogle Scholar
  14. 14.
    Attard TM, Giglio P, Koppula S, et al. Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer. 2007;109(4):761–6.  https://doi.org/10.1002/cncr.22475.CrossRefPubMedGoogle Scholar
  15. 15.
    Brandes AA, Franceschi E, Tosoni A, et al. Adult neuroectodermal tumors of posterior fossa (medulloblastoma) and of supratentorial sites (stPNET). Crit Rev Oncol Hematol. 2009;71(2):165–79.  https://doi.org/10.1016/j.critrevonc.2009.02.002.CrossRefPubMedGoogle Scholar
  16. 16.
    Bourgouin PM, Tampieri D, Grahovac SZ, et al. CT and MR imaging findings in adults with cerebellar medulloblastoma: comparison with findings in children. AJR Am J Roentgenol. 1992;159(3):609–12.  https://doi.org/10.2214/ajr.159.3.1503035.CrossRefPubMedGoogle Scholar
  17. 17.
    Eran A, Ozturk A, Aygun N, et al. Medulloblastoma: atypical CT and MRI findings in children. Pediatr Radiol. 2010;40(7):1254–62.  https://doi.org/10.1007/s00247-009-1429-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Koral K, Gargan L, Bowers DC, et al. Imaging characteristics of atypical teratoid-rhabdoid tumor in children compared with medulloblastoma. AJR Am J Roentgenol. 2008;190(3):809–14.  https://doi.org/10.2214/AJR.07.3069.CrossRefPubMedGoogle Scholar
  19. 19.
    Fouladi M, Gajjar A, Boyett JM, et al. Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol. 1999;17(10):3234–7.  https://doi.org/10.1200/jco.1999.17.10.3234.CrossRefPubMedGoogle Scholar
  20. 20.
    Fan X, Eberhart CG. Medulloblastoma stem cells. J Clin Oncol. 2008;26(17):2821–7.  https://doi.org/10.1200/JCO.2007.15.2264.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sarkar C, Pramanik P, Karak AK, et al. Are childhood and adult medulloblastomas different? A comparative study of clinicopathological features, proliferation index and apoptotic index. J Neurooncol. 2002;59(1):49–61.  https://doi.org/10.1023/A:1016357731363.CrossRefPubMedGoogle Scholar
  22. 22.
    Giordana MT, Cavalla P, Dutto A, et al. Is medulloblastoma the same tumor in children and adults? J Neurooncol. 1997;35(2):169–76. http://www.ncbi.nlm.nih.gov/pubmed/9266455. Accessed 13 Aug 2016CrossRefPubMedGoogle Scholar
  23. 23.
    Carrie C, Lasset C, Alapetite C, et al. Multivariate analysis of prognostic factors in adult patients with medulloblastoma. Retrospective study of 156 patients. Cancer. 1994;74(8):2352–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Atalar B, Ozsahin M, Call J, et al. Treatment outcome and prognostic factors for adult patients with medulloblastoma: the Rare Cancer Network (RCN) experience. Radiother Oncol. 2018;127(1):96–102.  https://doi.org/10.1016/j.radonc.2017.12.028.CrossRefPubMedGoogle Scholar
  25. 25.
    Giordana MT, D’Agostino C, Pollo B, et al. Anaplasia is rare and does not influence prognosis in adult medulloblastoma. J Neuropathol Exp Neurol. 2005;64(10):869–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Gajjar A, Hernan R, Kocak M, et al. Clinical, histopathologic, and molecular markers of prognosis: toward a new disease risk stratification system for medulloblastoma. J Clin Oncol. 2004;22(6):984–93.  https://doi.org/10.1200/JCO.2004.06.032.CrossRefPubMedGoogle Scholar
  27. 27.
    Lai R. Survival of patients with adult medulloblastoma: a population-based study. Cancer. 2008;112(7):1568–74.  https://doi.org/10.1002/cncr.23329.CrossRefPubMedGoogle Scholar
  28. 28.
    Kool M, Koster J, Bunt J, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One. 2008;3(8):e3088.  https://doi.org/10.1371/journal.pone.0003088.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thompson MC. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24(12):1924–31.  https://doi.org/10.1200/JCO.2005.04.4974.CrossRefPubMedGoogle Scholar
  30. 30.
    Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2009;28.  https://doi.org/10.1200/JCO.2009.27.4324.
  31. 31.
    Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.  https://doi.org/10.1007/s00401-007-0243-4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.  https://doi.org/10.1038/415436a.CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandez-Teijeiro A, Betensky RA, Sturla LM, et al. Combining gene expression profiles and clinical parameters for risk stratification in medulloblastomas. J Clin Oncol. 2004;22(6):994–8.  https://doi.org/10.1200/JCO.2004.03.036.CrossRefPubMedGoogle Scholar
  34. 34.
    Shih DJH, Northcott PA, Remke M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32(9):886–96.  https://doi.org/10.1200/JCO.2013.50.9539.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ryan SL, Schwalbe EC, Cole M, et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol. 2012;123(4):501–13.  https://doi.org/10.1007/s00401-011-0923-y.CrossRefPubMedGoogle Scholar
  36. 36.
    Remke M, Hielscher T, Northcott PA, et al. Adult medulloblastoma comprises three major molecular variants. J Clin Oncol. 2011;29(19):2717–23.  https://doi.org/10.1200/JCO.2011.34.9373.CrossRefPubMedGoogle Scholar
  37. 37.
    Al-Halabi H, Nantel A, Klekner A, et al. Preponderance of sonic hedgehog pathway activation characterizes adult medulloblastoma. Acta Neuropathol. 2011;121(2):229–39.  https://doi.org/10.1007/s00401-010-0780-0.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35.  https://doi.org/10.1200/JCO.2012.48.5052.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ramaswamy V, Northcott PA, Taylor MD. FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genet. 2011;204(11):577–88.  https://doi.org/10.1016/j.cancergen.2011.11.001.CrossRefPubMedGoogle Scholar
  40. 40.
    Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.  https://doi.org/10.1007/s00401-012-0958-8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carrie C, Hoffstetter S, Gomez F, et al. Impact of targeting deviations on outcome in medulloblastoma: study of the French Society of Pediatric Oncology (SFOP). Int J Radiat Oncol Biol Phys. 1999;45(2):435–9. http://www.ncbi.nlm.nih.gov/pubmed/10487567. Accessed 9 Apr 2016CrossRefPubMedGoogle Scholar
  42. 42.
    Prados MD, Warnick RE, Wara WM, et al. Medulloblastoma in adults. Int J Radiat Oncol Biol Phys. 1995;32(4):1145–52. http://www.ncbi.nlm.nih.gov/pubmed/7607936. Accessed 28 Aug 2016CrossRefPubMedGoogle Scholar
  43. 43.
    Brandes AA, Palmisano V, Monfardini S. Medulloblastoma in adults: clinical characteristics and treatment. Cancer Treat Rev. 1999;25(1):3–12.  https://doi.org/10.1053/ctrv.1998.0096.CrossRefPubMedGoogle Scholar
  44. 44.
    Curran EK, Le GM, Sainani KL, et al. Do children and adults differ in survival from medulloblastoma? A study from the SEER registry. J Neurooncol. 2009;95(1):81–5.  https://doi.org/10.1007/s11060-009-9894-4.CrossRefPubMedGoogle Scholar
  45. 45.
    Le QT, Weil MD, Wara WM, et al. Adult medulloblastoma: an analysis of survival and prognostic factors. Cancer J Sci Am. 1997;3(4):238–45. http://www.ncbi.nlm.nih.gov/pubmed/9263630. Accessed 13 Aug 2016PubMedGoogle Scholar
  46. 46.
    Ferrante L, Mastronardi L, Celli P, et al. Medulloblastoma in adulthood. J Neurosurg Sci. 1991;35(1):23–30. http://www.ncbi.nlm.nih.gov/pubmed/1890457. Accessed 7 Nov 2016PubMedGoogle Scholar
  47. 47.
    Coulbois S, Civit T, Grignon Y, et al. Adult medulloblastoma. Review of 22 patients. Neurochirurgie. 2001;47(1):6–12. http://www.ncbi.nlm.nih.gov/pubmed/11283450. Accessed 7 Nov 2016PubMedGoogle Scholar
  48. 48.
    Aragonés MP, Magallón R, Piqueras C, et al. Medulloblastoma in adulthood: prognostic factors influencing survival and recurrence. Acta Neurochir. 1994;127(1–2):65–8. http://www.ncbi.nlm.nih.gov/pubmed/7942185. Accessed 9 Nov 2016CrossRefPubMedGoogle Scholar
  49. 49.
    Padovani L, Sunyach MP, Perol D, et al. Common strategy for adult and pediatric medulloblastoma: a multicenter series of 253 adults. Int J Radiat Oncol Biol Phys. 2007;68(2):433–40.  https://doi.org/10.1016/j.ijrobp.2006.12.030.CrossRefPubMedGoogle Scholar
  50. 50.
    Chang CH, Housepian EM, Herbert C. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology. 1969;93(6):1351–9.  https://doi.org/10.1148/93.6.1351.CrossRefPubMedGoogle Scholar
  51. 51.
    Lai SF, Wang CW, Chen YH, et al. Medulloblastoma in adults: treatment outcome, relapse patterns, and prognostic factors. Strahlenther Onkol. 2012;188(10):878–86.  https://doi.org/10.1007/s00066-012-0168-2.CrossRefPubMedGoogle Scholar
  52. 52.
    Chan AW, Tarbell NJ, Black PM, et al. Adult medulloblastoma: prognostic factors and patterns of relapse. Neurosurgery. 2000;47(3):623–32.PubMedGoogle Scholar
  53. 53.
    Brandes AA, Franceschi E, Tosoni A, et al. Long-term results of a prospective study on the treatment of medulloblastoma in adults. Cancer. 2007;110(9):2035–41.  https://doi.org/10.1002/cncr.23003.CrossRefPubMedGoogle Scholar
  54. 54.
    Brandes AA, Ermani M, Amista P, et al. The treatment of adults with medulloblastoma: a prospective study. Int J Radiat Oncol Biol Phys. 2003;57(3):755–61.  https://doi.org/10.1016/S0360-3016(03)00643-6.CrossRefPubMedGoogle Scholar
  55. 55.
    Miralbell R, Bieri S, Huguenin P, et al. Prognostic value of cerebrospinal fluid cytology in pediatric medulloblastoma. Swiss Pediatric Oncology Group. Ann Oncol. 1999;10(2):239–41. http://www.ncbi.nlm.nih.gov/pubmed/10093696. Accessed 28 Nov 2016CrossRefPubMedGoogle Scholar
  56. 56.
    Zeltzer PM, Boyett JM, Finlay JL, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol. 1999;17(3):832–45.  https://doi.org/10.1200/jco.1999.17.3.832.CrossRefPubMedGoogle Scholar
  57. 57.
    Frost PJ, Laperriere NJ, Wong CS, et al. Medulloblastoma in adults. Int J Radiat Oncol Biol Phys. 1995;32(4):951–7.Google Scholar
  58. 58.
    Eberhart CG, Kepner JL, Goldthwaite PT, et al. Histopathologic grading of medulloblastomas. Cancer. 2002;94(2):552–60.  https://doi.org/10.1002/cncr.10189.CrossRefPubMedGoogle Scholar
  59. 59.
    Lamont JM, McManamy CS, Pearson AD, et al. Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res. 2004;10(16):5482–93.  https://doi.org/10.1158/1078-0432.CCR-03-0721.CrossRefPubMedGoogle Scholar
  60. 60.
    Hartsell WF, Montag AG, Lydon J, et al. Treatment of medulloblastoma in adults. Am J Clin Oncol. 1992;15(3):207–11. http://www.ncbi.nlm.nih.gov/pubmed/1590272. Accessed 14 Aug 2016CrossRefPubMedGoogle Scholar
  61. 61.
    Bloom HJG, Bessell EM, Between T. Medulloblastoma in adults: a review of 47 patients treated between 1952 and 1981. Int J Radiat Oncol. 1990;18(4):763–72.  https://doi.org/10.1016/0360-3016(90)90395-Z.CrossRefGoogle Scholar
  62. 62.
    Hubbard JL, Scheithauer BW, Kispert DB, et al. Adult cerebellar medulloblastomas: the pathological, radiographic, and clinical disease spectrum. J Neurosurg. 1989;70(4):536–44.  https://doi.org/10.3171/jns.1989.70.4.0536.CrossRefPubMedGoogle Scholar
  63. 63.
    Korshunov A, Remke M, Werft W, et al. Adult and pediatric medulloblastomas are genetically distinct and require different algorithms for molecular risk stratification. J Clin Oncol. 2010;28(18):3054–60.  https://doi.org/10.1200/JCO.2009.25.7121.CrossRefPubMedGoogle Scholar
  64. 64.
    Giordana MT, Duo D, Gasverde S, et al. MDM2 overexpression is associated with short survival in adults with medulloblastoma. Neuro Oncol. 2002;4(2):115–22.  https://doi.org/10.1093/neuonc/4.2.115.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ray A, Ho M, Ma J, et al. A clinicobiological model predicting survival in medulloblastoma. Clin Cancer Res. 2004;10(22):7613–20.  https://doi.org/10.1158/1078-0432.CCR-04-0499.CrossRefPubMedGoogle Scholar
  66. 66.
    Packer RJ, Gajjar A, Vezina G, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24(25):4202–8.  https://doi.org/10.1200/JCO.2006.06.4980.CrossRefPubMedGoogle Scholar
  67. 67.
    Packer RJ, Zhou T, Holmes E, et al. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro Oncol. 2013;15(1):97–103.  https://doi.org/10.1093/neuonc/nos267.CrossRefPubMedGoogle Scholar
  68. 68.
    Greenberg HS, Chamberlain MC, Glantz MJ, et al. Adult medulloblastoma: multiagent chemotherapy. Neuro Oncol. 2001;3(1):29–34.  https://doi.org/10.1093/neuonc/3.1.29.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tabori U, Sung L, Hukin J, et al. Medulloblastoma in the second decade of life: a specific group with respect to toxicity and management: a Canadian Pediatric Brain Tumor Consortium Study. Cancer. 2005;103(9):1874–80.  https://doi.org/10.1002/cncr.21003.CrossRefPubMedGoogle Scholar
  70. 70.
    Kortmann RD, Kühl J, Timmermann B, et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ‘91. Int J Radiat Oncol Biol Phys. 2000;46(2):269–79. http://www.ncbi.nlm.nih.gov/pubmed/10661332. Accessed 11 Nov 2016CrossRefPubMedGoogle Scholar
  71. 71.
    Friedrich C, von Bueren AO, von Hoff K, et al. Treatment of adult nonmetastatic medulloblastoma patients according to the paediatric HIT 2000 protocol: a prospective observational multicentre study. Eur J Cancer. 2013;49(4):893–903.  https://doi.org/10.1016/j.ejca.2012.10.006.CrossRefPubMedGoogle Scholar
  72. 72.
    Beier D, Proescholdt M, Reinert C, et al. Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro Oncol. 2018;20(3):400–10.  https://doi.org/10.1093/neuonc/nox155.CrossRefPubMedGoogle Scholar
  73. 73.
    Jakacki RI, Burger PC, Zhou T, et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children’s Oncology Group Phase I/II study. J Clin Oncol. 2012;30(21):2648–53.  https://doi.org/10.1200/JCO.2011.40.2792.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Brandes AA, Bartolotti M, Marucci G, et al. New perspectives in the treatment of adult medulloblastoma in the era of molecular oncology. Crit Rev Oncol Hematol. 2015;94(3):348–59.  https://doi.org/10.1016/j.critrevonc.2014.12.016.CrossRefPubMedGoogle Scholar
  75. 75.
    Moots PL, O’neill A, Londer H, et al. Preradiation chemotherapy for adult high-risk medulloblastoma: a trial of the ECOG-ACRIN Cancer Research Group (E4397). Am J Clin Oncol. 2016.  https://doi.org/10.1097/coc.0000000000000326.
  76. 76.
    Paterson E, Farr RF. Cerebellar medulloblastoma: treatment by irradiation of the whole central nervous system. Acta Radiol. 1953;39(4):323–36. http://www.ncbi.nlm.nih.gov/pubmed/13057640. Accessed 11 Nov 2016CrossRefPubMedGoogle Scholar
  77. 77.
    Herrlinger U, Steinbrecher A, Rieger J, et al. Adult medulloblastoma: prognostic factors and response to therapy at diagnosis and at relapse. J Neurol. 2005;252(3):291–9.  https://doi.org/10.1007/s00415-005-0560-2.CrossRefPubMedGoogle Scholar
  78. 78.
    Taylor MD, Mainprize TG, Rutka JT. Molecular insight into medulloblastoma and central nervous system primitive neuroectodermal tumor biology from hereditary syndromes: a review. Neurosurgery. 2000;47(4):888–901. http://www.ncbi.nlm.nih.gov/pubmed/11014429. Accessed 30 Nov 2016CrossRefPubMedGoogle Scholar
  79. 79.
    Thomas PR, Deutsch M, Kepner JL, et al. Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J Clin Oncol. 2000;18(16):3004–11.  https://doi.org/10.1200/jco.2000.18.16.3004.CrossRefPubMedGoogle Scholar
  80. 80.
    St Clair WH, Adams JA, Bues M, et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys. 2004;58(3):727–34.  https://doi.org/10.1016/S0360-3016(03)01574-8.CrossRefPubMedGoogle Scholar
  81. 81.
    Merchant TE, Hua C, Shukla H, et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive function. Pediatr Blood Cancer. 2008;51(1):110–7.  https://doi.org/10.1002/pbc.21530.CrossRefPubMedGoogle Scholar
  82. 82.
    Abacioglu U, Uzel O, Sengoz M, et al. Medulloblastoma in adults: treatment results and prognostic factors. Int J Radiat Oncol Biol Phys. 2002;54(3):855–60.  https://doi.org/10.1016/S0360-3016(02)02986-3.CrossRefPubMedGoogle Scholar
  83. 83.
    Berry MP, Jenkin RDT, Keen CW, et al. Radiation treatment for medulloblastoma. J Neurosurg. 1981;55(1):43–51.  https://doi.org/10.3171/jns.1981.55.1.0043.CrossRefPubMedGoogle Scholar
  84. 84.
    Hazuka MB, DeBiose DA, Henderson RH, et al. Survival results in adult patients treated for medulloblastoma. Cancer. 1992;69(8):2143–8. http://www.ncbi.nlm.nih.gov/pubmed/1544120. Accessed 11 Nov 2016CrossRefPubMedGoogle Scholar
  85. 85.
    Skołyszewski J, Gliński B. Results of postoperative irradiation of medulloblastoma in adults. Int J Radiat Oncol Biol Phys. 1989;16(2):479–82. http://www.ncbi.nlm.nih.gov/pubmed/2921151. Accessed 30 Nov 2016CrossRefPubMedGoogle Scholar
  86. 86.
    del Charco JO, Bolek TW, Mark McCollough W, et al. 15 Medulloblastoma: time-dose relationship based on a 30-year review. Int J Radiat Oncol. 1996;36(1):166.  https://doi.org/10.1016/S0360-3016(97)85357-6.CrossRefGoogle Scholar
  87. 87.
    Brandes AA, Paris MK. Review of the prognostic factors in medulloblastoma of children and adults. Crit Rev Oncol Hematol. 2004;50(2):121–8.  https://doi.org/10.1016/j.critrevonc.2003.08.005.CrossRefPubMedGoogle Scholar
  88. 88.
    Michalski JM, Janss A. Results of COG ACNS0331: a Phase III Trial of Involved-Field Radiotherapy (IFRT) and Low Dose Craniospinal Irradiation (LD-CSI) with chemotherapy in average-risk medulloblastoma: a report from the children’s oncology group. In: ASTRO 2016 Abstruct, vol. 96. Amsterdam: Elsevier; 2017. p. 937–8.  https://doi.org/10.1016/j.ijrobp.2016.09.046.CrossRefGoogle Scholar
  89. 89.
    Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008;35(1):310.  https://doi.org/10.1118/1.2818738.CrossRefPubMedGoogle Scholar
  90. 90.
    Bedford JL, Warrington AP. Commissioning of Volumetric Modulated Arc Therapy (VMAT). Int J Radiat Oncol. 2009;73(2):537–45.  https://doi.org/10.1016/j.ijrobp.2008.08.055.CrossRefGoogle Scholar
  91. 91.
    Lee YK, Brooks CJ, Bedford JL, et al. Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. Int J Radiat Oncol Biol Phys. 2012;82(2):1006–12.  https://doi.org/10.1016/j.ijrobp.2010.12.033.CrossRefPubMedGoogle Scholar
  92. 92.
    Lopez Guerra JL, Marrone I, Jaen J, et al. Outcome and toxicity using helical tomotherapy for craniospinal irradiation in pediatric medulloblastoma. Clin Transl Oncol. 2014;16(1):96–101.  https://doi.org/10.1007/s12094-013-1048-7.CrossRefPubMedGoogle Scholar
  93. 93.
    Myers P, Stathakis S, Mavroidis P, et al. Evaluation of localization errors for craniospinal axis irradiation delivery using volume modulated arc therapy and proposal of a technique to minimize such errors. Radiother Oncol. 2013;108(1):107–13.  https://doi.org/10.1016/j.radonc.2013.05.026.CrossRefPubMedGoogle Scholar
  94. 94.
    Yock TI, Tarbell NJ. Technology insight: proton beam radiotherapy for treatment in pediatric brain tumors. Nat Clin Pract Oncol. 2004;1(2):97–103.; quiz 1 p following 111.  https://doi.org/10.1038/ncponc0090.CrossRefPubMedGoogle Scholar
  95. 95.
    Brown AP, Barney CL, Grosshans DR, et al. Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma. Int J Radiat Oncol Biol Phys. 2013;86(2):277–84.  https://doi.org/10.1016/j.ijrobp.2013.01.014.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chang EL, Allen P, Wu C, et al. Acute toxicity and treatment interruption related to electron and photon craniospinal irradiation in pediatric patients treated at the University of Texas M. D. Anderson Cancer Center. Int J Radiat Oncol. 2002;52(4):1008–16.  https://doi.org/10.1016/S0360-3016(01)02717-1.CrossRefGoogle Scholar
  97. 97.
    Jefferies S, Rajan B, Ashley S, et al. Haematological toxicity of cranio-spinal irradiation. Radiother Oncol. 1998;48(1):23–7.  https://doi.org/10.1016/S0167-8140(98)00024-3.CrossRefPubMedGoogle Scholar
  98. 98.
    Mulhern RK, Merchant TE, Gajjar A, et al. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5(7):399–408.  https://doi.org/10.1016/S1470-2045(04)01507-4.CrossRefPubMedGoogle Scholar
  99. 99.
    Abayomi OK. Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol. 1996;35(6):659–63. http://www.ncbi.nlm.nih.gov/pubmed/8938210. Accessed 28 Oct 2015CrossRefPubMedGoogle Scholar
  100. 100.
    Schultheiss TE, Kun LE, Ang KK, et al. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995;31(5):1093–112.  https://doi.org/10.1016/0360-3016(94)00655-5.CrossRefPubMedGoogle Scholar
  101. 101.
    Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity – molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9.  https://doi.org/10.1054/bjoc.2001.2100.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mulhern RK, Butler RW. Neurocognitive sequelae of childhood cancers and their treatment. Pediatr Rehabil. 2014;7(1):1–14 discussion 15–6.  https://doi.org/10.1080/13638490310001655528.CrossRefGoogle Scholar
  103. 103.
    Eaton BR, Esiashvili N, Kim S, et al. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro Oncol. 2016;18(6):881–7.  https://doi.org/10.1093/neuonc/nov302.CrossRefPubMedGoogle Scholar
  104. 104.
    Paulino AC. Hypothyroidism in children with medulloblastoma: a comparison of 3600 and 2340 cGy craniospinal radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(3):543–7. http://www.ncbi.nlm.nih.gov/pubmed/12062595. Accessed 30 Mar 2016CrossRefPubMedGoogle Scholar
  105. 105.
    Gurney JG, Kadan-Lottick NS, Packer RJ, et al. Endocrine and cardiovascular late effects among adult survivors of childhood brain tumors: Childhood Cancer Survivor Study. Cancer. 2003;97(3):663–73.  https://doi.org/10.1002/cncr.11095.CrossRefPubMedGoogle Scholar
  106. 106.
    Bluemke DA, Fishman EK, Scott WW Jr. Skeletal complications of radiation therapy. Radiographics. 1994;14(1):111–21.  https://doi.org/10.1148/RADIOGRAPHICS.14.1.8128043.
  107. 107.
    Xu W, Janss A, Moshang T. Adult height and adult sitting height in childhood medulloblastoma survivors. J Clin Endocrinol Metab. 2003;88(10):4677–81.  https://doi.org/10.1210/jc.2003-030619.CrossRefPubMedGoogle Scholar
  108. 108.
    Ramsey RG, Zacharias CE. MR imaging of the spine after radiation therapy: easily recognizable effects. Am J Neuroradiol. 1985;6(2):247–51.Google Scholar
  109. 109.
    Yankelevitz DF, Henschke CI, Knapp PH, et al. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol. 1991;157(1):87–92.  https://doi.org/10.2214/ajr.157.1.1904679.CrossRefPubMedGoogle Scholar
  110. 110.
    Meadows AT, Friedman DL, Neglia JP, et al. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort. J Clin Oncol. 2009;27(14):2356–62.  https://doi.org/10.1200/JCO.2008.21.1920.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.  https://doi.org/10.1667/RR0763.1.CrossRefPubMedGoogle Scholar
  112. 112.
    Chung CS, Yock TI, Nelson K, et al. Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol. 2013;87(1):46–52.  https://doi.org/10.1016/j.ijrobp.2013.04.030.CrossRefGoogle Scholar
  113. 113.
    Tabori U, Sung L, Hukin J, et al. Distinctive clinical course and pattern of relapse in adolescents with medulloblastoma. Int J Radiat Oncol Biol Phys. 2006;64(2):402–7.  https://doi.org/10.1016/j.ijrobp.2005.07.962.CrossRefPubMedGoogle Scholar
  114. 114.
    Franceschi E, Bartolotti M, Paccapelo A, et al. Adjuvant chemotherapy in adult medulloblastoma: is it an option for average-risk patients? J Neurooncol. 2016;128(2):235–40.  https://doi.org/10.1007/s11060-016-2097-x.CrossRefPubMedGoogle Scholar
  115. 115.
    Kocakaya S, Beier CP, Beier D. Chemotherapy increases long-term survival in patients with adult medulloblastoma – a literature-based meta-analysis. Neuro Oncol. 2016;18(3):408–16.  https://doi.org/10.1093/neuonc/nov185.CrossRefPubMedGoogle Scholar
  116. 116.
    Kortmann RD, Timmermann B, Kühl J, et al. HIT ‘91 (prospective, co-operative study for the treatment of malignant brain tumors in childhood): accuracy and acute toxicity of the irradiation of the craniospinal axis. Results of the quality assurance program. Strahlenther Onkol. 1999;175(4):162–9. http://www.ncbi.nlm.nih.gov/pubmed/10230458. Accessed 9 Apr 2016CrossRefPubMedGoogle Scholar
  117. 117.
    Evans AE, Jenkin RD, Sposto R, et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J Neurosurg. 1990;72(4):572–82.  https://doi.org/10.3171/jns.1990.72.4.0572.CrossRefPubMedGoogle Scholar
  118. 118.
    Grabenbauer GG, Beck JD, Erhardt J, et al. Postoperative radiotherapy of medulloblastoma. Impact of radiation quality on treatment outcome. Am J Clin Oncol. 1996;19(1):73–7. http://www.ncbi.nlm.nih.gov/pubmed/8554041. Accessed 12 Nov 2016CrossRefPubMedGoogle Scholar
  119. 119.
    Miralbell R, Fitzgerald TJ, Laurie F, et al. Radiotherapy in pediatric medulloblastoma: quality assessment of Pediatric Oncology Group Trial 9031. Int J Radiat Oncol Biol Phys. 2006;64(5):1325–30.  https://doi.org/10.1016/j.ijrobp.2005.11.002.CrossRefPubMedGoogle Scholar
  120. 120.
    Kramer ED, Vezina LG, Packer RJ, et al. Staging and surveillance of children with central nervous system neoplasms: recommendations of the Neurology and Tumor Imaging Committees of the Children’s Cancer Group. Pediatr Neurosurg. 1994;20(4):254–62. discussion 3. http://www.ncbi.nlm.nih.gov/pubmed/8043464. Accessed 9 Feb 2017CrossRefPubMedGoogle Scholar
  121. 121.
    Bartels U, Shroff M, Sung L, et al. Role of spinal MRI in the follow-up of children treated for medulloblastoma. Cancer. 2006;107(6):1340–7.  https://doi.org/10.1002/cncr.22129.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyKeck School of Medicine of USCLos AngelesUSA
  2. 2.Department of Radiation OncologyKeck School of Medicine of USC, Norris Cancer HospitalLos AngelesUSA
  3. 3.Department of Radiation OncologyChildren’s Center for Cancer and Blood Diseases, Children’s Hospital Los AngelesLos AngelesUSA
  4. 4.Department of Radiation OncologyUT MD Anderson Cancer CenterHoustonUSA

Personalised recommendations