Advertisement

Metastatic Epidural Spinal Cord Compression: Conventional Radiotherapy

  • Dirk Rades
  • Steven E. Schild
Chapter

Abstract

Metastatic epidural spinal cord compression (MESCC) is an oncologic emergency that requires prompt treatment. MESCC is most commonly treated with radiotherapy with or without corticosteroids. Upfront decompressive surgery may be used for selected patients with a good performance status and a relatively favorable survival prognosis. For radiotherapy, several dose-fractionation regimens are available ranging from a single fraction of 8–10 Gy to multi-fraction long-course programs such as 30 Gy in 10 fractions or 40 Gy in 20 fractions. The most appropriate regimen for an individual patient depends on the treatment goals and the patient’s expected life span. With respect to improvement of motor function specifically maintaining or regaining the ability to walk, a single fraction of 8 Gy is as effective as longer-course programs. Longer-course programs provide better local control of MESCC than single-fraction and multi-fraction short-course programs (e.g., 20 Gy in five fractions). Since the risk of a recurrence of MESCC in the same area of the spine increases with life span, patients with a better survival prognosis appear better treated with longer-course radiotherapy. Patients with a very favorable prognosis might even benefit from dose-fractionation regimens with total doses >30 Gy. Thus, for optimal personalization of radiotherapy in patients with MESCC, it is important to estimate a patient’s remaining life span. This is facilitated with survival scores available for MESCC in general and specifically for several primary tumors associated with MESCC.

Keywords

Metastatic epidural spinal cord compression Conventional radiotherapy Dose fractionation Decompressive surgery Motor deficits Ambulatory status Local control Re-irradiation Survival prognosis 

References

  1. 1.
    Spiller WG. Rapidly progressive paralysis associated with carcinoma. AMA Arch Neurol Psychiatry. 1925;13:471–7.CrossRefGoogle Scholar
  2. 2.
    Rades D, Abrahm JL. The role of radiotherapy for metastatic epidural spinal cord compression. Nat Rev Clin Oncol. 2010;7:590–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Loblaw DA, Laperriere NJ, Mackillop WJ. A population-based study of malignant spinal cord compression in Ontario. Clin Oncol. 2003;15:211–7.CrossRefGoogle Scholar
  4. 4.
    Prasad D, Schiff D. Malignant spinal-cord compression. Lancet Oncol. 2005;6:15–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Ushio Y, Posner R, Posner JB, et al. Experimental spinal cord compression by epidural neoplasms. Neurology. 1977;27:422–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Kato A, Ushio Y, Hayakawa T, et al. Circulatory disturbance of the spinal cord with epidural neoplasms in rats. J Neurosurg. 1985;63:260–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Manabe S, Tanaka H, Hogo Y, et al. Experimental analysis of the spinal cord compressed by spinal metastasis. Spine. 1989;14:1308–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Tarlov I, Klinger H, Vitale S. Spinal cord compression studies: I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry. 1953;70:813–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Tarlov I, Klinger H. Spinal cord compression studies: II. Time limits for recovery after acute compression in dogs. AMA Arch Neurol Psychiatry. 1954;71:271–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Rades D, Heidenreich F, Bremer M, et al. Time of developing motor deficits before radiotherapy as a new and relevant prognostic factor in metastatic spinal cord compression: final results of a retrospective analysis. Eur Neurol. 2001;45:266–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Rades D, Heidenreich F, Karstens JH. Final results of a prospective study of the prognostic value of the time to develop motor deficits before irradiation in metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2002;53:975–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gilbert RW, Kim JH, Posner RB. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3:40–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Bach F, Larsen BH, Rohde K, et al. Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations, and prognosis in 398 patients with spinal cord compression. Acta Neurochir. 1990;107:37–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Kovner F, Spigel S, Rider I, et al. Radiation therapy of metastatic spinal cord compression. Multidisciplinary team diagnosis and treatment. J Neurooncol. 1999;42:85–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Helweg-Larsen S, Sørensen PS, Kreiner S. Prognostic factors in metastatic spinal cord compression: a prospective study using multivariate analysis of variables influencing survival and gait function in 153 patients. Int J Radiat Oncol Biol Phys. 2000;46:1163–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys. 1995;32:959–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Husband DJ. Malignant spinal cord compression: prospective study of delays in referral and treatment. BMJ. 1998;317:18–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tomita T, Galicich JH, Sundaresan N. Radiation therapy for spinal epidural metastases with complete block. Acta Radiol Oncol. 1983;22:135–43.CrossRefPubMedGoogle Scholar
  19. 19.
    Baskin DS. Spinal cord injury. In: Ewans RW, editor. Neurology and trauma. Philadelphia: Saunders; 1996. p. 276–99.Google Scholar
  20. 20.
    Li KC, Poon PY. Sensitivity and specificity of MRI in detecting malignant spinal cord compression and in distinguishing malignant from benign compression fractures of vertebrae. Magn Reson Imaging. 1988;6:547–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Colletti PM, Siegel HJ, Woo MY, et al. The impact on treatment planning of MRI of the spine in patients suspected of vertebral metastasis: an efficacy study. Comput Med Imaging Graph. 1996;20:159–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Rades D, Bremer M, Goehde S, et al. Spondylodiscitis in patients with spinal cord compression: a possible pitfall in radiation oncology. Radiother Oncol. 2001;59:307–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Kim RY, Smith JW, Spencer SA, et al. Malignant epidural spinal cord compression associated with a paravertebral mass: its radiotherapeutic outcome on radiosensitivity. Int J Radiat Oncol Biol Phys. 1993;27:1079–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Leviov M, Dale J, Stein M, et al. The management of metastatic spinal cord compression: a radiotherapeutic success ceiling. Int J Radiat Oncol Biol Phys. 1993;27:231–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Rades D, Stalpers LJ, Veninga T, et al. Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol. 2005;23:3366–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Rades D, Rudat V, Veninga T, et al. A score predicting posttreatment ambulatory status in patients irradiated for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2008;72:905–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Rades D, Douglas S, Huttenlocher S, et al. Validation of a score predicting post-treatment ambulatory status after radiotherapy for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2011;79:1503–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Rades D, Fehlauer F, Schulte R, et al. Prognostic factors for local control and survival after radiotherapy of metastatic spinal cord compression. J Clin Oncol. 2006;24:3388–93.CrossRefPubMedGoogle Scholar
  29. 29.
    Rades D, Dunst J, Schild SE. The first score predicting overall survival in patients with metastatic spinal cord compression. Cancer. 2008;112:157–61.CrossRefPubMedGoogle Scholar
  30. 30.
    Rades D, Douglas S, Veninga T, et al. Validation and simplification of a score predicting survival in patients irradiated for metastatic spinal cord compression. Cancer. 2010;116:3670–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Rades D, Douglas S, Schild SE. A validated survival score for breast cancer patients with metastatic spinal cord compression. Strahlenther Onkol. 2013;189:41–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Rades D, Douglas S, Veninga T, et al. A survival score for patients with metastatic spinal cord compression from prostate cancer. Strahlenther Onkol. 2012;188:802–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Rades D, Douglas S, Veninga T, et al. A validated survival score for patients with metastatic spinal cord compression from non-small cell lung cancer. BMC Cancer. 2012;12:302.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Douglas S, Schild SE, Rades D. A new score predicting the survival of patients with spinal cord compression from myeloma. BMC Cancer. 2012;12:425.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Douglas S, Schild SE, Rades D. Metastatic spinal cord compression in patients with cancer of unknown primary. Estimating the survival prognosis with a validated score. Strahlenther Onkol. 2012;188:1048–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Rades D, Douglas S, Veninga T, et al. Prognostic factors and a survival score for patients with metastatic spinal cord compression (MSCC) from renal cell carcinoma (RCC). Australasian J Cancer. 2012;11:169–74.Google Scholar
  37. 37.
    Rades D, Douglas S, Huttenlocher S, et al. Prognostic factors and a survival score for patients with metastatic spinal cord compression from colorectal cancer. Strahlenther Onkol. 2012;188:1114–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44:1027–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Sørensen PS, Helweg-Larsen S, Mouridsen H, et al. Effect of high-dose dexamethasone in carcinomatous metastatic spinal cord compression treated with radiotherapy: a randomized trial. Eur J Cancer. 1994;30A:22–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Heimdal K, Hirschberg H, Slettebo H, et al. High incidence of serious side effects of high-dose dexamethasone treatment in patients with epidural spinal cord compression. J Neurooncol. 1992;12:141–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Saad F, Gleason DM, Murrey R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94:1458–68.CrossRefPubMedGoogle Scholar
  42. 42.
    Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 2004;96:879–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Rades D, Lange M, Veninga T, et al. Final results of a prospective study comparing the local control of short-course and long-course radiotherapy for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2011;79:524–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Rades D, Hakim SG, Bajrovic A, et al. Impact of zoledronic acid on control of metastatic spinal cord compression. Strahlenther Onkol. 2012;188:910–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.CrossRefPubMedGoogle Scholar
  46. 46.
    Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–32.CrossRefPubMedGoogle Scholar
  49. 49.
    Aviles A, Fernandez R, Gonzalez JL, et al. Spinal cord compression as a primary manifestation of aggressive malignant lymphomas: long-term analysis of treatments with radiotherapy, chemotherapy or combined therapy. Leuk Lymphoma. 2002;43:355–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Wallington M, Mendis S, Premawardhana U, et al. Local control and survival in spinal cord compression from lymphoma and myeloma. Radiother Oncol. 1997;42:43–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Patchell R, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366:643–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Yen D, Kuriachan V, Yach J, et al. Long-term outcome of anterior decompression and spinal fixation after placement of the Welesley Wedge for thoracic and lumbar spinal metastasis. J Neurosurg. 2002;96(Suppl 1):6–9.PubMedGoogle Scholar
  53. 53.
    Klimo P Jr, Dailey AT, Fessler RG. Posterior surgical approaches and outcomes in metastatic spine-disease. Neurosurg Clin N Am. 2004;15:425–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Young RF, Post EM, King GA. Treatment of spinal epidural metastases. Randomized prospective comparison of laminectomy and radiotherapy. J Neurosurg. 1980;53:741–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Sørensen PS, Borgesen SE, Rohde K, et al. Metastatic epidural spinal cord compression: results of treatment and survival. Cancer. 1990;65:1502–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Klimo P Jr, Kestle JR, Schmidt MH. Treatment of metastatic spinal epidural disease: a review of the literature. Neurosurg Focus. 2003;15:E1.PubMedGoogle Scholar
  57. 57.
    Klimo P Jr, Thompson CJ, Kestle JR, et al. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro Oncol. 2005;7:64–76.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kunkler I. Surgical resection in metastatic spinal cord compression. Lancet. 2006;367:109.CrossRefPubMedGoogle Scholar
  59. 59.
    Knisely J, Strugar J. Can decompressive surgery improve outcome in patients with metastatic epidural spinal-cord compression? Nat Clin Pract Oncol. 2006;3:14–5.CrossRefPubMedGoogle Scholar
  60. 60.
    Rades D, Huttenlocher S, Dunst J, et al. Matched pair analysis comparing surgery followed by radiotherapy and radiotherapy alone for metastatic spinal cord compression. J Clin Oncol. 2010;28:3597–604.CrossRefPubMedGoogle Scholar
  61. 61.
    Rades D, Huttenlocher S, Bajrovic A, et al. Surgery followed by radiotherapy versus radiotherapy alone for metastatic spinal cord compression from unfavorable tumors. Int J Radiat Oncol Biol Phys. 2011;81:e861–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Joiner MC, Van der Kogel AJ. The linear-quadratic approach to fractionation and calculation of isoeffect relationships. In: Steel GG, editor. Basic clinical radiobiology. New York: Oxford University Press; 1997. p. 106–12.Google Scholar
  63. 63.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.CrossRefPubMedGoogle Scholar
  64. 64.
    Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Maranzano E, Latini P, Beneventi S, et al. Comparison of two different radiotherapy schedules for spinal cord compression in prostate cancer. Tumori. 1998;84:472–7.CrossRefPubMedGoogle Scholar
  66. 66.
    Rades D, Fehlauer F, Stalpers LJA, et al. A prospective evaluation of two radiation schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: final results of a multi-center study. Cancer. 2004;101:2687–92.CrossRefPubMedGoogle Scholar
  67. 67.
    Maranzano E, Bellavita R, Rossi R, et al. Short-course versus split-course radiotherapy in metastatic spinal cord compression: results of a phase III, randomized, multicenter trial. J Clin Oncol. 2005;23:3358–65.CrossRefPubMedGoogle Scholar
  68. 68.
    Maranzano E, Trippa F, Casale M, et al. 8Gy single-dose radiotherapy is effective in metastatic spinal cord compression: results of a phase III randomized multicentre Italian trial. Radiother Oncol. 2009;93:174–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Rades D, Šegedin B, Conde-Moreno AJ, et al. Radiotherapy with 4 Gy × 5 versus 3 Gy × 10 for metastatic epidural spinal cord compression: final results of the SCORE-2 trial (ARO 2009/01). J Clin Oncol. 2016;34:597–602.CrossRefPubMedGoogle Scholar
  70. 70.
    Rades D, Panzner A, Rudat V, et al. Dose escalation of radiotherapy for metastatic spinal cord compression (MSCC) in patients with relatively favorable survival prognosis. Strahlenther Onkol. 2011;187:729–35.CrossRefPubMedGoogle Scholar
  71. 71.
    Rades D, Stalpers LJ, Veninga T, et al. Spinal reirradiation after short-course RT for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2005;63:872–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Nieder C, Grosu AL, Andratschke NH, et al. Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys. 2006;66:1446–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dirk Rades
    • 1
  • Steven E. Schild
    • 2
  1. 1.Department of Radiation OncologyUniversity of LübeckLübeckGermany
  2. 2.Department of Radiation OncologyMayo ClinicScottsdaleUSA

Personalised recommendations