Advertisement

Meningioma

  • Timothy J. Harris
  • Samuel T. Chao
  • C. Leland Rogers
Chapter

Abstract

Meningiomas are the most prevalent primary intracranial neoplasm. To date, the main management options are observation, surgical resection, and radiation therapy. The choice of treatment depends on symptoms, size, extent of resection, grade of meningioma, and prior treatment. Although the majority of meningiomas are benign, Grade II and Grade III meningiomas have a higher risk of recurrence and morbidity. The role of radiation had been based largely on retrospective studies, but four contemporary prospective studies, EORTC 22042-26042, RTOG 0539, NRG BN003, and the ROAM/EORTC1308 trials will define its use, especially in Grade II gross totally resected meningiomas. The role of systemic therapy is limited, but studies are ongoing and necessary. This chapter will review its epidemiology, histology, grade, treatment, and studies, both historical and recent.

Keywords

Meningioma WHO grade Surgery External beam radiotherapy Radiosurgery Clinical trials 

References

  1. 1.
    Perry A. Meningiomas. In: Rosenblum M, McLendon R, Bigner DD, editors. Russell & Rubinstein’s pathology of tumors of the nervous system. London: Hodder Arnold; 2006. p. 427–74.Google Scholar
  2. 2.
    Claus EB, Bondy ML, Schildkraut JM, et al. Epidemiology of intracranial meningioma. Neurosurgery. 2005;57:1088–95; discussion 1088–95.Google Scholar
  3. 3.
    Ostrom QT, Gittleman H, Xu J, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 2016;18:v1–v75.  https://doi.org/10.1093/neuonc/now207.
  4. 4.
    Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010;99:307–14.  https://doi.org/10.1007/s11060-010-0386-3.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nakasu S, Hirano A, Shimura T, et al. Incidental meningiomas in autopsy study. Surg Neurol. 1987;27:319–22.Google Scholar
  6. 6.
    Adegbite AB, Khan MI, Paine KW, et al. The recurrence of intracranial meningiomas after surgical treatment. J Neurosurg. 1983;58:51–6.  https://doi.org/10.3171/jns.1983.58.1.0051.
  7. 7.
    Stafford SL1, Pollock BE, Foote RL, et al. Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery. 2001;49:1029–37; discussion 1037–8.Google Scholar
  8. 8.
    Longstreth WT Jr, Dennis LK, McGuire VM, et al. Epidemiology of intracranial meningioma. Cancer. 1993;72:639–48.Google Scholar
  9. 9.
    Miralbell R, Linggood RM, de la Monte S, et al. The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol. 1992;13:157–64.Google Scholar
  10. 10.
    Louis DN, Ramesh V, Gusella JF. Neuropathology and molecular genetics of neurofibromatosis 2 and related tumors. Brain Pathol. 1995;5:163–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006;5:1045–54.  https://doi.org/10.1016/S1474-4422(06)70625-1.CrossRefPubMedGoogle Scholar
  12. 12.
    Asthagiri AR1, Parry DM, Butman JA, et al. Neurofibromatosis type 2. Lancet. 2009;373:1974–86.  https://doi.org/10.1016/S0140-6736(09)60259-2.
  13. 13.
    Perry A, Dehner LP. Meningeal tumors of childhood and infancy. An update and literature review. Brain Pathol. 2003;13:386–408.CrossRefPubMedGoogle Scholar
  14. 14.
    Perry A, Giannini C, Raghavan R, et al. Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol. 2001;60:994–1003.Google Scholar
  15. 15.
    Al-Mefty O, Topsakal C, Pravdenkova S, et al. Radiation-induced meningiomas: clinical, pathological, cytokinetic, and cytogenetic characteristics. J Neurosurg. 2004;100:1002–13.  https://doi.org/10.3171/jns.2004.100.6.1002.
  16. 16.
    Hug EB, Devries A, Thornton AF, et al. Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy. J Neurooncol. 2000;48:151–60.Google Scholar
  17. 17.
    Ron E, Modan B, Boice JD Jr. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol. 1988;127:713–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Ron E, Modan B, Boice JD Jr, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319:1033–9.  https://doi.org/10.1056/NEJM198810203191601.
  19. 19.
    Strojan P, Popovic M, Jereb B. Secondary intracranial meningiomas after high-dose cranial irradiation: report of five cases and review of the literature. Int J Radiat Oncol Biol Phys. 2000;48:65–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Bindal R, Goodman JM, Kawasaki A, et al. The natural history of untreated skull base meningiomas. Surg Neurol. 2003;59:87–92; discussion 92.Google Scholar
  21. 21.
    Whittle IR, Smith C, Navoo P, et al. Meningiomas. Lancet. 2004;363:1535–43.  https://doi.org/10.1016/S0140-6736(04)16153-9.
  22. 22.
    Ayerbe J, Lobato RD, de la Cruz J, et al. Risk factors predicting recurrence in patients operated on for intracranial meningioma. A multivariate analysis. Acta Neurochir. 1999;141:921–32.Google Scholar
  23. 23.
    Drape JL, Krause D, Tongio J. MRI of aggressive meningiomas. J Neuroradiol. 1992;19:49–62.PubMedGoogle Scholar
  24. 24.
    Rohringer M, Sutherland GR, Louw DF, et al. Incidence and clinicopathological features of meningioma. J Neurosurg. 1989;71:665–72.  https://doi.org/10.3171/jns.1989.71.5.0665.
  25. 25.
    Schubeus P, Schorner W, Rottacker C, et al. Intracranial meningiomas: how frequent are indicative findings in CT and MRI? Neuroradiology. 1990;32:467–73.Google Scholar
  26. 26.
    Kuratsu J, Kochi M, Ushio Y. Incidence and clinical features of asymptomatic meningiomas. J Neurosurg. 2000;92:766–70.  https://doi.org/10.3171/jns.2000.92.5.0766.CrossRefPubMedGoogle Scholar
  27. 27.
    Buhl R, Nabavi A, Wolff S, et al. MR spectroscopy in patients with intracranial meningiomas. Neurol Res. 2007;29:43–6.  https://doi.org/10.1179/174313206X153824.
  28. 28.
    Demir MK, Iplikcioglu AC, Dincer A, et al. Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. Eur J Radiol. 2006;60:48–55.  https://doi.org/10.1016/j.ejrad.2006.06.002.
  29. 29.
    Ghodsian M, Obrzut SL, Hyde CC, et al. Evaluation of metastatic meningioma with 2-deoxy-2-[18F]fluoro-D-glucose PET/CT. Clin Nucl Med. 2005;30:717–20.Google Scholar
  30. 30.
    Hakyemez B, Yildirim N, Gokalp G, et al. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006;48:513–20.  https://doi.org/10.1007/s00234-006-0094-z.
  31. 31.
    Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29:1147–52.  https://doi.org/10.3174/ajnr.A0996.
  32. 32.
    Ogawa T, Inugami A, Hatazawa J, et al. Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol. 1996;17:345–53.Google Scholar
  33. 33.
    Sibtain NA, Howe FA, Saunders DE. The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol. 2007;62:109–19.  https://doi.org/10.1016/j.crad.2006.09.012.CrossRefPubMedGoogle Scholar
  34. 34.
    Toh CH, Castillo M, Wong AM, et al. Differentiation between classic and atypical meningiomas with use of diffusion tensor imaging. AJNR Am J Neuroradiol. 2008;29:1630–5.  https://doi.org/10.3174/ajnr.A1170.
  35. 35.
    Combs SE, Schulz-Ertner D, Debus J, et al. Improved correlation of the neuropathologic classification according to adapted world health organization classification and outcome after radiotherapy in patients with atypical and anaplastic meningiomas. Int J Radiat Oncol Biol Phys. 2011;81:1415–21.  https://doi.org/10.1016/j.ijrobp.2010.07.039.
  36. 36.
    Domingues PH, Sousa P, Otero Á, et al. Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype. Neuro Oncol. 2014;16:735–47.  https://doi.org/10.1093/neuonc/not325.
  37. 37.
    Olar A, Wani KM, Sulman EP, et al. Mitotic index is an independent predictor of recurrence-free survival in meningioma. Brain Pathol. 2015;25:266–75.  https://doi.org/10.1111/bpa.12174.
  38. 38.
    Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20:22–39.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sughrue ME, Kane AJ, Shangari G, et al. The relevance of Simpson Grade I and II resection in modern neurosurgical treatment of World Health Organization Grade I meningiomas. J Neurosurg. 2010;113:1029–35.  https://doi.org/10.3171/2010.3.JNS091971.
  40. 40.
    Condra KS, Buatti JM, Mendenhall WM, et al. Benign meningiomas: primary treatment selection affects survival. Int J Radiat Oncol Biol Phys. 1997;39:427–36.Google Scholar
  41. 41.
    Oya S, Kawai K, Nakatomi H, et al. Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg. 2012;117:121–8.  https://doi.org/10.3171/2012.3.JNS111945.
  42. 42.
    Hasseleid BF, Meling TR, Ronning P, et al. Surgery for convexity meningioma: Simpson Grade I resection as the goal: clinical article. J Neurosurg. 2012;117:999–1006.  https://doi.org/10.3171/2012.9.JNS12294.
  43. 43.
    Morokoff AP, Zauberman J, Black PM. Surgery for convexity meningiomas. Neurosurgery. 2008;63:427–33; discussion 433–4.  https://doi.org/10.1227/01.NEU.0000310692.80289.28.CrossRefPubMedGoogle Scholar
  44. 44.
    Stafford SL, Perry A, Suman VJ, et al. Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc. 1998;73:936–42.  https://doi.org/10.4065/73.10.936.
  45. 45.
    Mirimanoff RO, Dosoretz DE, Linggood RM, et al. Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg. 1985;62:18–24.  https://doi.org/10.3171/jns.1985.62.1.0018.
  46. 46.
    Soyuer S, Chang EL, Selek U, et al. Radiotherapy after surgery for benign cerebral meningioma. Radiother Oncol. 2004;71:85–90.  https://doi.org/10.1016/j.radonc.2004.01.006.
  47. 47.
    Litré CF, Colin P, Noudel R, et al. Fractionated stereotactic radiotherapy treatment of cavernous sinus meningiomas: a study of 100 cases. Int J Radiat Oncol Biol Phys. 2009;74:1012–7.  https://doi.org/10.1016/j.ijrobp.2008.09.012.
  48. 48.
    Henzel M, Gross MW, Hamm K, et al. High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol. 2001;19:3547–53.  https://doi.org/10.1200/JCO.2001.19.15.3547.
  49. 49.
    Henzel M, Gross MW, Hamm K, et al. Stereotactic radiotherapy of meningiomas: symptomatology, acute and late toxicity. Strahlenther Onkol. 2006;182:382–8.  https://doi.org/10.1007/s00066-006-1535-7.
  50. 50.
    Korah MP, Nowlan AW, Johnstone PA, et al. Radiation therapy alone for imaging-defined meningiomas. Int J Radiat Oncol Biol Phys. 2010;76:181–6.  https://doi.org/10.1016/j.ijrobp.2009.01.066.
  51. 51.
    Dufour H, Muracciole X, Métellus P, et al. Long-term tumor control and functional outcome in patients with cavernous sinus meningiomas treated by radiotherapy with or without previous surgery: is there an alternative to aggressive tumor removal? Neurosurgery. 2001;48:285–94; discussion 294–6.Google Scholar
  52. 52.
    Pourel N, Auque J, Bracard S, et al. Efficacy of external fractionated radiation therapy in the treatment of meningiomas: a 20-year experience. Radiother Oncol. 2001;61:65–70.Google Scholar
  53. 53.
    Wenkel E, Thornton AF, Finkelstein D, et al. Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48:1363–70.Google Scholar
  54. 54.
    Maguire PD, Clough R, Friedman AH, et al. Fractionated external-beam radiation therapy for meningiomas of the cavernous sinus. Int J Radiat Oncol Biol Phys. 1999;44:75–9.Google Scholar
  55. 55.
    Liu JK, Forman S, Hershewe GL, et al. Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy. Neurosurgery. 2002;50:950–5; discussion 955–7.Google Scholar
  56. 56.
    Pitz S, Becker G, Schiefer U, et al. Stereotactic fractionated irradiation of optic nerve sheath meningioma: a new treatment alternative. Br J Ophthalmol. 2002;86:1265–8.Google Scholar
  57. 57.
    Baumert BG, Villà S, Studer G, et al. Early improvements in vision after fractionated stereotactic radiotherapy for primary optic nerve sheath meningioma. Radiother Oncol. 2004;72:169–74.  https://doi.org/10.1016/j.radonc.2004.04.008.
  58. 58.
    Becker G, Jeremic B, Pitz S, et al. Stereotactic fractionated radiotherapy in patients with optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys. 2002;54:1422–9.Google Scholar
  59. 59.
    Goldsmith BJ, Wara WM, Wilson CB, et al. Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg. 1994;80:195–201.  https://doi.org/10.3171/jns.1994.80.2.0195.
  60. 60.
    Winkler C, Dornfeld S, Schwarz R, et al. The results of radiotherapy in meningiomas with a high risk of recurrence. A retrospective analysis. Strahlenther Onkol. 1998;174:624–8.Google Scholar
  61. 61.
    Brower JV, Amdur RJ, Kirwan J, et al. Radiation therapy for optic nerve sheath meningioma. Pract Radiat Oncol. 2013;3:223–8.  https://doi.org/10.1016/j.prro.2012.06.010.
  62. 62.
    Otsuka S, Tamiya T, Ono Y, et al. The relationship between peritumoral brain edema and the expression of vascular endothelial growth factor and its receptors in intracranial meningiomas. J Neurooncol. 2004;70:349–57.Google Scholar
  63. 63.
    Cai R, Barnett GH, Novak E, et al. Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumor-brain contact interface area. Neurosurgery. 2010;66:513–22.  https://doi.org/10.1227/01.NEU.0000365366.53337.88.
  64. 64.
    Lee KJ, Joo WI, Rha HK, et al. Peritumoral brain edema in meningiomas: correlations between magnetic resonance imaging, angiography, and pathology. Surg Neurol. 2008;69:350–5; discussion 355.  https://doi.org/10.1016/j.surneu.2007.03.027.
  65. 65.
    Rogers L, Barani I, Chamberlain M, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015;122:4–23.  https://doi.org/10.3171/2014.7.JNS131644.
  66. 66.
    Selch MT, Ahn E, Laskari A, et al. Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys. 2004;59:101–11.  https://doi.org/10.1016/j.ijrobp.2003.09.003.
  67. 67.
    Tanzler E, Morris CG, Kirwan JM, et al. Outcomes of WHO Grade I meningiomas receiving definitive or postoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:508–13.  https://doi.org/10.1016/j.ijrobp.2009.11.032.
  68. 68.
    Uy NW, Woo SY, Teh BS, et al. Intensity-modulated radiation therapy (IMRT) for meningioma. Int J Radiat Oncol Biol Phys. 2002;53:1265–70.Google Scholar
  69. 69.
    Hakim R, Alexander E 3rd, Loeffler JS, et al. Results of linear accelerator-based radiosurgery for intracranial meningiomas. Neurosurgery. 1998;42:446–53; discussion 453–4.Google Scholar
  70. 70.
    Kollová A, Liscák R, Novotný J Jr, et al. Gamma Knife surgery for benign meningioma. J Neurosurg. 2007;107:325–36.  https://doi.org/10.3171/JNS-07/08/0325.
  71. 71.
    Skeie BS, Enger PO, Skeie GO, et al. Gamma knife surgery of meningiomas involving the cavernous sinus: long-term follow-up of 100 patients. Neurosurgery. 2010;66:661–8; discussion 668–9.  https://doi.org/10.1227/01.NEU.0000366112.04015.E2.
  72. 72.
    Patil CG, Hoang S, Borchers DJ 3rd, et al. Predictors of peritumoral edema after stereotactic radiosurgery of supratentorial meningiomas. Neurosurgery. 2008;63:435–40; discussion 440–2.  https://doi.org/10.1227/01.NEU.0000325257.58684.92.
  73. 73.
    Ganz JC, Schrottner O, Pendl G. Radiation-induced edema after Gamma Knife treatment for meningiomas. Stereotact Funct Neurosurg. 1996;66(Suppl 1):129–33.CrossRefPubMedGoogle Scholar
  74. 74.
    Ganz JC, Backlund EO, Thorsen FA. The results of Gamma Knife surgery of meningiomas, related to size of tumor and dose. Stereotact Funct Neurosurg. 1993;61(Suppl 1):23–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Kondziolka D, Flickinger JC, Perez B. Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review. Gamma Knife Meningioma Study Group. Neurosurgery. 1998;43:405–13; discussion 413–4.CrossRefPubMedGoogle Scholar
  76. 76.
    DiBiase SJ, Kwok Y, Yovino S. Factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas. Int J Radiat Oncol Biol Phys. 2004;60:1515–9.  https://doi.org/10.1016/j.ijrobp.2004.05.073.
  77. 77.
    Pollock BE, Stafford SL, Link MJ, et al. Single-fraction radiosurgery for presumed intracranial meningiomas: efficacy and complications from a 22-year experience. Int J Radiat Oncol Biol Phys. 2012;83:1414–8.  https://doi.org/10.1016/j.ijrobp.2011.10.033.
  78. 78.
    Unger KR, Lominska CE, Chanyasulkit J, et al. Risk factors for posttreatment edema in patients treated with stereotactic radiosurgery for meningiomas. Neurosurgery. 2012;70:639–45.  https://doi.org/10.1227/NEU.0b013e3182351ae7.
  79. 79.
    Girvigian MR, Chen JC, Rahimian J, et al. Comparison of early complications for patients with convexity and parasagittal meningiomas treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Neurosurgery. 2008;62:A19–27; discussion A27–18.  https://doi.org/10.1227/01.neu.0000325933.34154.cb.
  80. 80.
    Shakir SI, Souhami L, Petrecca K, et al. Prognostic factors for progression in atypical meningioma. J Neurosurg. 2018.  https://doi.org/10.3171/2017.6.JNS17120.
  81. 81.
    Goyal LK, Suh JH, Mohan DS, et al. Local control and overall survival in atypical meningioma: a retrospective study. Int J Radiat Oncol Biol Phys. 2000;46:57–61.Google Scholar
  82. 82.
    Bagshaw HP, Burt LM, Jensen RL, et al. Adjuvant radiotherapy for atypical meningiomas. J Neurosurg. 2017;126:1822–8.  https://doi.org/10.3171/2016.5.JNS152809.
  83. 83.
    Aizer AA, Arvold ND, Catalano P, et al. Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma. Neuro Oncol. 2014;16:1547–53.  https://doi.org/10.1093/neuonc/nou098.
  84. 84.
    Hammouche S, Clark S, Wong AH, et al. Long-term survival analysis of atypical meningiomas: survival rates, prognostic factors, operative and radiotherapy treatment. Acta Neurochir. 2014;156:1475–81.  https://doi.org/10.1007/s00701-014-2156-z.
  85. 85.
    Komotar RJ, Iorgulescu JB, Raper DM, et al. The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg. 2012;117:679–86.  https://doi.org/10.3171/2012.7.JNS112113.
  86. 86.
    Ohba S, Kobayashi M, Horiguchi T, et al. Long-term surgical outcome and biological prognostic factors in patients with skull base meningiomas. J Neurosurg. 2011;114:1278–87.  https://doi.org/10.3171/2010.11.JNS10701.
  87. 87.
    Aghi MK, Carter BS, Cosgrove GR, et al. Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery. 2009;64:56–60; discussion 60.  https://doi.org/10.1227/01.NEU.0000330399.55586.63.
  88. 88.
    Talacchi A, Muggiolu F, De Carlo A, et al. Recurrent atypical meningiomas: combining surgery and radiosurgery in one effective multimodal treatment. World Neurosurg. 2016;87:565–72.  https://doi.org/10.1016/j.wneu.2015.10.013.
  89. 89.
    McGovern SL, Aldape KD, Munsell MF, et al. A comparison of World Health Organization tumor grades at recurrence in patients with non-skull base and skull base meningiomas. J Neurosurg. 2010;112:925–33.  https://doi.org/10.3171/2009.9.JNS09617.
  90. 90.
    Kessel KA, Fischer H, Oechnser M, et al. High-precision radiotherapy for meningiomas: long-term results and patient-reported outcome (PRO). Strahlenther Onkol. 2017.  https://doi.org/10.1007/s00066-017-1156-3.
  91. 91.
    Hardesty DA, Wolf AB, Brachman DG, et al. The impact of adjuvant stereotactic radiosurgery on atypical meningioma recurrence following aggressive microsurgical resection. J Neurosurg. 2013;119:475–81.  https://doi.org/10.3171/2012.12.JNS12414.
  92. 92.
    Jenkinson MD, Waqar M, Farah JO, et al. Early adjuvant radiotherapy in the treatment of atypical meningioma. J Clin Neurosci. 2016.  https://doi.org/10.1016/j.jocn.2015.09.021.
  93. 93.
    Rogers CL, Perry A, Pugh S, et al. Pathology concordance levels for meningioma classification and grading in NRG Oncology RTOG Trial 0539. Neuro Oncol. 2016;18:565–74.  https://doi.org/10.1093/neuonc/nov247.
  94. 94.
    Harris AE, Lee JY, Omalu B, et al. The effect of radiosurgery during management of aggressive meningiomas. Surg Neurol. 2003;60:298–305; discussion 305.Google Scholar
  95. 95.
    Huffmann BC, Reinacher PC, Gilsbach JM. Gamma knife surgery for atypical meningiomas. J Neurosurg. 2005;102(Suppl):283–6.Google Scholar
  96. 96.
    Kano H, Takahashi JA, Katsuki T, et al. Stereotactic radiosurgery for atypical and anaplastic meningiomas. J Neurooncol. 2007;84:41–7.  https://doi.org/10.1007/s11060-007-9338-y.
  97. 97.
    Attia A, Chan MD, Mott RT, et al. Patterns of failure after treatment of atypical meningioma with gamma knife radiosurgery. J Neurooncol. 2012;108:179–85.  https://doi.org/10.1007/s11060-012-0828-1.
  98. 98.
    Rogers L, Jensen R, Perry A. Chasing your dural tail: factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas: In regard to DiBiase et al. (Int J Radiat Oncol Biol Phys 2004;60:1515–1519). Int J Radiat Oncol Biol Phys. 2005;62:616–8; author reply 618–9.  https://doi.org/10.1016/j.ijrobp.2005.02.026.CrossRefPubMedGoogle Scholar
  99. 99.
    Choi CY, Soltys SG, Gibbs IC, et al. Cyberknife stereotactic radiosurgery for treatment of atypical (WHO grade II) cranial meningiomas. Neurosurgery. 2010;67:1180–8.  https://doi.org/10.1227/NEU.0b013e3181f2f427.
  100. 100.
    Zhang M, Ho AL, D’Astous M, et al. CyberKnife stereotactic radiosurgery for atypical and malignant meningiomas. World Neurosurg. 2016;91:574–81 e571.  https://doi.org/10.1016/j.wneu.2016.04.019.
  101. 101.
    Valery CA, Faillot M, Lamproglou I, et al. Grade II meningiomas and Gamma Knife radiosurgery: analysis of success and failure to improve treatment paradigm. J Neurosurg. 2016;125:89–96.  https://doi.org/10.3171/2016.7.GKS161521.
  102. 102.
    Dziuk TW, Woo S, Butler EB, et al. Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol. 1998;37:177–88.Google Scholar
  103. 103.
    Sughrue ME, Sanai N, Shangari G, et al. Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas. J Neurosurg. 2010;113:202–9.  https://doi.org/10.3171/2010.1.JNS091114.
  104. 104.
    Milosevic MF, Frost PJ, Laperriere NJ, et al. Radiotherapy for atypical or malignant intracranial meningioma. Int J Radiat Oncol Biol Phys. 1996;34:817–22.Google Scholar
  105. 105.
    DeVries A, Munzenrider JE, Hedley-Whyte T, et al. The role of radiotherapy in the treatment of malignant meningiomas. Strahlenther Onkol. 1999;175:62–7.Google Scholar
  106. 106.
    Onodera S, Aoyama H, Katoh N, et al. Long-term outcomes of fractionated stereotactic radiotherapy for intracranial skull base benign meningiomas in single institution. Jpn J Clin Oncol. 2011;41:462–8.  https://doi.org/10.1093/jjco/hyq231.
  107. 107.
    Chamberlain MC. Hydroxyurea for recurrent surgery and radiation refractory high-grade meningioma. |J Neurooncol. 2012;107:315–21.  https://doi.org/10.1007/s11060-011-0741-z.
  108. 108.
    Chamberlain MC, Glantz MJ, Fadul CE. Recurrent meningioma: salvage therapy with long-acting somatostatin analogue. Neurology. 2007;69:969–73.  https://doi.org/10.1212/01.wnl.0000271382.62776.b7.
  109. 109.
    Johnson DR, Kimmel DW, Burch PA, et al. Phase II study of subcutaneous octreotide in adults with recurrent or progressive meningioma and meningeal hemangiopericytoma. Neuro Oncol. 2011;13:530–5.  https://doi.org/10.1093/neuonc/nor044.
  110. 110.
    Norden AD, Raizer JJ, Abrey LE, et al. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma. J Neurooncol. 2010;96:211–7.  https://doi.org/10.1007/s11060-009-9948-7.
  111. 111.
    Wen PY, Yung WK, Lamborn KR, et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08). Neuro Oncol. 2009;11:853–60.  https://doi.org/10.1215/15228517-2009-010.
  112. 112.
    Kaley T, Barani I, Chamberlain M, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro Oncol. 2014;16:829–40.  https://doi.org/10.1093/neuonc/not330.
  113. 113.
    Ji Y, Rankin C, Grunberg S, et al. Double-blind phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005. J Clin Oncol. 2015;33:4093–8.  https://doi.org/10.1200/JCO.2015.61.6490.
  114. 114.
    Rogers L, Zhang P, Vogelbaum MA, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology/RTOG-0539. J Neurosurg. 2017.  https://doi.org/10.3171/2016.11.JNS161170.
  115. 115.
    Pieper DR, Al-Mefty O, Hanada Y, et al. Hyperostosis associated with meningioma of the cranial base: secondary changes or tumor invasion. Neurosurgery. 1999;44:742–6; discussion 746–7.Google Scholar
  116. 116.
    Katz TS, Amdur RJ, Yachnis AT, et al. Pushing the limits of radiotherapy for atypical and malignant meningioma. Am J Clin Oncol. 2005;28:70–4.Google Scholar
  117. 117.
    Farzin M, Molls M, Kampfer S, et al. Optic toxicity in radiation treatment of meningioma: a retrospective study in 213 patients. J Neurooncol. 2016;127:597–606.  https://doi.org/10.1007/s11060-016-2071-7.
  118. 118.
    Steinvorth S, Welzel G, Fuss M, et al. Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up. Radiother Oncol. 2003;69:177–82.Google Scholar
  119. 119.
    Meyers CA, Geara F, Wong PF, et al. Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys. 2000;46:51–5.Google Scholar
  120. 120.
    Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27:215–21.Google Scholar
  121. 121.
    Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88:43–50.  https://doi.org/10.3171/jns.1998.88.1.0043.
  122. 122.
    Stafford SL, Pollock BE, Leavitt JA, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55:1177–81.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Timothy J. Harris
    • 1
  • Samuel T. Chao
    • 2
    • 3
  • C. Leland Rogers
    • 4
  1. 1.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandUSA
  3. 3.Rose Ella Burkhardt Brain Tumor and Neuro-oncology CenterCleveland ClinicClevelandUSA
  4. 4.Department of Radiation OncologyBarrow Neurological InstitutePhoenixUSA

Personalised recommendations