Advertisement

Energy Band Structure

  • Vladimir G. Plekhanov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 248)

Abstract

Optical probing and manipulation of electron quantum states in isotope-mixed compounds at the nanoscale are key to developing future nanophotonic devices, which are capable of ultrafast and low-power operation. Before beginning a general discussion on the application of isotopic materials science, it is helpful to have the knowledge of the electronic band structure used in materials. The modern view of solid-state physics is based on the presentation of elementary excitations having mass, quasi-impulse, and electrical charge. The base of such view of solid is ideal gas, which described the behavior of the system, e.g., noninteracting electrons. Such an approach to model of elementary excitations as a suitable model for the application of the quantum mechanics for the solution of solid-state physics task. In this chapter, some peculiarities of isotopic materials science will be considered by taking into account the dependence of the properties of elementary excitations on the isotope effect. It is illustrated when the dimensions of a solid are reduced to the size of the characteristic length of electrons in the isotope-mixed materials (de Broglie wavelength, localization length), new physical properties due to quantum effects become apparent. Our intention has been to physics of low-dimensional isotope-based compounds and quantum devices would built up to the treatment of those new electronic, transport and optical properties.

References

  1. 1.
    D. Pines, Elementary Excitations in Solids (W.A. Benjamin Inc., New York, 1963)Google Scholar
  2. 2.
    S.I. Pekar, Crystaloptics and Addition Waves (Naukova Dumka, Kiev, 1982). (in Russian)Google Scholar
  3. 3.
    G.P. Srivastava, The Physics of Phonons (Hilger, Bristol, 1990)Google Scholar
  4. 4.
    V.G. Plekhanov, Isotope - Mixed Crystals: Fundamentals and Applications (unpublished, 2011)Google Scholar
  5. 5.
    V.G. Plekhanov, Manifestation and Origin of the Isotope Effect (2009), arXiv:0907.2024
  6. 6.
    V.G. PLekhanov, Giant Isotope Effect in Solids (Stefan - University Press, La Jola, 2004)Google Scholar
  7. 7.
    J. Callaway, Energy Band Structure (Academic Press, New York, 1964)Google Scholar
  8. 8.
    R.M. Martin, Electronic Structure - Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  9. 9.
    J.M. Ziman, Electrons and Phonons (Oxford University Press, London, 1963)Google Scholar
  10. 10.
    N.W. Aschcroft, N.D. Mermin, Solid State Physics (Holt Reinhart and Winston, New York, 1975)Google Scholar
  11. 11.
    M.L. Cohen, J. Chelikowsky, Electronic Properties and Optical Properties of Semiconductors, vol. 75, 2nd edn., Springer Series Solid State Sci (Springer, Berlin, 1989)CrossRefGoogle Scholar
  12. 12.
    V.G. Plekhanov, Isotope Effect - Macroscopic Maniestation of the Strong Interaction (LAMBERT Academic Publishing, Saarbrücken, 2017). (in Russian)Google Scholar
  13. 13.
    J.C. Slater, Electronic Structure of Molecules, vol. 1 (McCraw - Hill Company Inc., New York, 1963)Google Scholar
  14. 14.
    J.L. Birman, Space Group Symmetry, in Handbuch für Physik, vol. 25/26 (Berlin - New York, 1974)Google Scholar
  15. 15.
    A.I. Lebedev, Physics of Semiconducting Devices (Fizmatlit, Moscow, 2001). (in Russian)Google Scholar
  16. 16.
    J.R. Chelikowsky, M.L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc - blende semiconductors. Phys. Rev. B 14, 556–582 (1976)CrossRefGoogle Scholar
  17. 17.
    V.C. Vavilov, A.A. Gippius, E.A. Konorova, Electron and Optical Processes in Diamond (Science, Moscow, 1985) (in Russian)Google Scholar
  18. 18.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)CrossRefGoogle Scholar
  19. 19.
    V.G. Plekhanov, Isotope effects in solid state physics, in Semiconductor and Semimetals, vol. 68, ed. by R.K. Willardson, E. Weber (Academic Press, San Diego, 2001)Google Scholar
  20. 20.
    R.P. Mildren, Intrinsic optical properties of diamond, in Optical Engineering of Diamond, ed. by R.P. Mildren, J.R. Ratenau (Wiley - VCH Verlag GmbH, 2013)Google Scholar
  21. 21.
    J.R. Chelikowsky, S.G. Louie, First - principles linear combination of atomic orbitals method for the cohesive and structural properties of solids: application to diamond. Phys. Rev. B 29, 3470–3482 (1984)CrossRefGoogle Scholar
  22. 22.
    M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)CrossRefGoogle Scholar
  23. 23.
    V.G. Plekhanov, Elementary excitations in isotope - mixed crystals, Phys. Rep. 410(1–3), 1–235 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Cardona, Renormalization of the optical response of semiconductors by electron - phonon interaction, phys. st. sol. (a) 188, 1209–1232 (2001)CrossRefGoogle Scholar
  25. 25.
    V.G. Plekhanov, Wannier - Mott excitons in isotope - disordered crystals. Rep. Prog. Phys. 61, 1045–1095 (1998)CrossRefGoogle Scholar
  26. 26.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958)CrossRefGoogle Scholar
  27. 27.
    G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostrand, New York, 1951)Google Scholar
  28. 28.
    V.G. Plekhanov, Experimental evidence of strong phonon scattering in isotopical disordered systems: the case LiH\(_{\rm x}D_{\rm 1-x}\). Phys. Rev. B 51, 8874–8878 (1995)CrossRefGoogle Scholar
  29. 29.
    A.F. Kapustinsky, L.M. Shamovsky, K.S. Bayushkina, Thermochemistry of isotopes. Acta Physicochim. (USSR) 7, 799–810 (1937)Google Scholar
  30. 30.
    V.G. Plekhanov, Isotopic and disorder effects in large radius exciton spectroscopy. Physics - Uspekhi (moscow) 40, 533–579 (1997)Google Scholar
  31. 31.
    F.I. Kreingold, K.F. Lider, M.B. Shabaeva, Influence of isotope substitution sulfur on the exciton spectrum in CdS crystal, Fiz. Tverd. Tela (St. Petersburg) 26, 3940–3941 (1984) (in Russian)Google Scholar
  32. 32.
    V.G. Plekhanov, Renormalization the energy of elementary excitations in solids by the strong (nuclear) interaction. Universal J. Phys. Appl. 11, 6–12 (2017)Google Scholar
  33. 33.
    R.J. Elliott, J.A. Krumhansl, P.L. Leath, The theory and properties of randomly disordered crystals and physical systems. Rev. Mod. Phys. 46, 465–542 (1974)CrossRefGoogle Scholar
  34. 34.
    Y. Onodera, Y. Toyozawa, Persistence and amalgamation types in the electronic structure of mixed crystals. J. Phys. Soc. Japan 24, 341–355 (1968)CrossRefGoogle Scholar
  35. 35.
    Y. Toyozawa, Optical Processes in Solids (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  36. 36.
    M. Cardona, M.L.W. Thewalt, Isotope effect on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)CrossRefGoogle Scholar
  37. 37.
    F.I. Kreingold, K.F. Lider, K.I. Solov’ev, Isotope shift of exciton line in absorption spectrum Cu\(_{2}\)O. JETP Lett. (Moscow) 23, 679–681 (1976). (in Russian)Google Scholar
  38. 38.
    F.I. Kreingold, K.F. Lider, V.F. Sapega, Influence of isotope substitution on the exciton spectrum in Cu\(_{2}\)O crystal, Fiz. Tverd. Tela (St. Petersburg) 19, 3158–3160 (1977) (in Russian)Google Scholar
  39. 39.
    F.I. Kreingold, B.S. Kulinkin, Influence of isotope substitution on the forbidden gap of ZnO crystals, ibid, 28, 3164–3166 (1986) (in Russian)Google Scholar
  40. 40.
    F.I. Kreingold, Dependence of band gap ZnO on zero - point energy, ibid, 20, 3138–3140 (1978) (in Russian)Google Scholar
  41. 41.
    J.M. Zhang, T. Ruf, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B 57, 9716–9722 (1998)CrossRefGoogle Scholar
  42. 42.
    T.A. Meyer, M.L.W. Thewalt, R. Lauck et al., Sulfur isotope effect on the excitonic spectra of CdS. Phys. Rev. B 69, 115214–5 (2004)CrossRefGoogle Scholar
  43. 43.
    G.L. Bir, G.E. Picus, Symmetry and Deformation in Semiconductors (Science, Moscow, 1972) (in Russian)Google Scholar
  44. 44.
    L.F. Lastras - Martinez, T. Ruf, M. Konuma et al., Isotopic effect on the dielectric response of Si around the E\(_{1}\) gap. Phys. Rev. B 61, 12946–12951 (2000)CrossRefGoogle Scholar
  45. 45.
    D. Karaskaja, M.L.W. Thewalt, T. Ruf, Photoluminescence studies of isotopically - enriched silicon: isotopic effects on indirect electronic band gap and phonon energies. Solid State Commun. 123, 87–92 (2003)CrossRefGoogle Scholar
  46. 46.
    S. Tsoi, H. Alowadhi, X. Lu, Electron - phonon renormalization of electronic band gaps of semiconductors: isotopically enriched silicon. Phys. Rev. B 70, 193201–4 (2004)CrossRefGoogle Scholar
  47. 47.
    A.K. Ramdas, S. Rodriguez, S. Tsoi et al., Electronic band gap of semiconductors as influenced by their isotopic composition. Solid State Commun. 133, 709–714 (2005)CrossRefGoogle Scholar
  48. 48.
    S. Tsoi, S. Rodriguez, A.K. Ramdas et al., Isotopic dependence of the E\(_{0}\) and E\(_{1}\) direct gaps in the electronic band structure of Si. Phys. Rev. B 72, 153203–4 (2005)CrossRefGoogle Scholar
  49. 49.
    D.G. Thomas (ed.), II -VI Semiconducting Comounds (Benjamin, New York, 1967)Google Scholar
  50. 50.
    A.A. Klochikhin, V.G. Plekhanov, Isotope effect on the Wannier - Mott exciton levels. Sov. Phys. Solid state 22, 342–344 (1980)Google Scholar
  51. 51.
    V.G. Plekhanov, Direct observation of the effect of isotope - induced - disorder on exciton binding energy in LiH\(_{\rm x}D_{\rm 1-x}\) mixed crystals. J. Phys. Condens. Matter 19, 086221–9 (2007)Google Scholar
  52. 52.
    R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)Google Scholar
  53. 53.
    A.T. Collins, S.C. Lawson, G. Davies, H. Kanda, Indirect energy gap of \(^{13}\)C diamond. Phys. Rev. Lett. 65, 891–894 (1990)CrossRefGoogle Scholar
  54. 54.
    H. Watanabe, S. Shikata, Superlattice structures from diamond. Diam. Relat. Mat. 20, 980–982 (2011)CrossRefGoogle Scholar
  55. 55.
    J. Barjon, F. Jomard, A. Tallaire et al., Determination of exciton diffusion lengths in isotopically engineered diamond junctions. Appl. Phys. Lett. 100, 122107–4 (2012)CrossRefGoogle Scholar
  56. 56.
    H. Watanabe, T. Koretsune, S. Nakashima et al., Isotope composition dependence of the band - gap energy in diamond. Phys. Rev. B 88, 205420–5 (2013)Google Scholar
  57. 57.
    C.D. Clark, P.J. Dean, P.V. Harris, Intrinsic edge absorption in diamond. Proc. R. Soc. (London) A277, 312–319 (1964)CrossRefGoogle Scholar
  58. 58.
    P.J. Dean, Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973)CrossRefGoogle Scholar
  59. 59.
    A.T. Collins, Band structure (Chap. 1), in Handbook of Industrial Diamond and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Bigelow (Marcel Dekker Inc., New York, 1998), p. 1Google Scholar
  60. 60.
    Zh.I. Alferov, The history and future of semiconductor heterostructures, Fiz. i Tech. Poluprovod. (Phys. Tech. Semicond) 32, 3–18 (1998) (in Russian)CrossRefGoogle Scholar
  61. 61.
    H. Watanabe, C.E. Nebel, S. Shikata, Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009)CrossRefGoogle Scholar
  62. 62.
    V.G. Plekhanov, Isotope Low - Dimensional Structures (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  63. 63.
    V.G. Plekhanov, Isotope - Based Quantum Information (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  64. 64.
    V.G. Plekhanov, A.V. Emel’yanenko, A.U. Grinfelds, Excitonic structure of Nai and LiH crystals cleaved in liquid helium. Phys. Lett. A 101, 291–294 (1984)CrossRefGoogle Scholar
  65. 65.
    V.G. Plekhanov, The influence of the surface state on the manifestation of exciton states in the wide - gap insulators. Opt. Spectr. 62, 1300–1309 (1987). (in Russian)Google Scholar
  66. 66.
    V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)CrossRefGoogle Scholar
  67. 67.
    V.G. Plekhanov, Resonant secondary emission spectra, in Proceedings International Conference on LASERS’80 (STS Press, VA, USA, 1981), pp. 94–99Google Scholar
  68. 68.
    J.L. Verble, J.L. Warren, J.L. Yarnell, Lattice dynamics of lithium hydride. Phys. Rev. 168, 980–989 (1968)CrossRefGoogle Scholar
  69. 69.
    S.D. Lester, T.S. Kim, B.G. Streetman, Distortion of band - edge luminescence in InP due to self - absorption. J. Appl. Phys. 63, 853–861 (1988)CrossRefGoogle Scholar
  70. 70.
    M. Namiki, S. Pascazio, Quantum theory of measuremen based on the many-Hilbert-space approach. Phys. Reports 232, 301–411 (1993)CrossRefGoogle Scholar
  71. 71.
    N. Gerasimenko, Ju. Parhomenko, Silicon–Material of Nanoelectronics (Technosphera, Moscow, 2007) (in Russian)Google Scholar
  72. 72.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, New York, 1988)Google Scholar
  73. 73.
    R.P. Feynman, R.P. Leighton, M. Sands, The Feynman Lecture in Physics, vol. 3 (Reading, Addison - Wesley, 1965)Google Scholar
  74. 74.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (Pergamon Press, New York, 1977)Google Scholar
  75. 75.
    B.B. Kadomtsev, Dynamics and Information (UFN, Moscow, 1997). (in Russian)Google Scholar
  76. 76.
    K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)CrossRefGoogle Scholar
  77. 77.
    K. Barnham, D. Vvedensky, Low - Dimensional Semicoonductor Structures (Cambridge University Press, Cambridge, 2009)Google Scholar
  78. 78.
    M.J. Kelly, Low - Dimensional Semiconductors (Clarendon Press, Oxford, 1995)Google Scholar
  79. 79.
    P. Michler (ed.), Single Semiconductor Quantum Dots (Springer, Berlin, 2009)Google Scholar
  80. 80.
    P. Harrison, Quantum Wells, Wires and Dots (Wiley, New York, 2001)Google Scholar
  81. 81.
    A.M. Fox, Optoelectronics in quantum well structures. Contemp. Phys. 37, 11–125 (1996)CrossRefGoogle Scholar
  82. 82.
    H. Grabert (ed.), Special Issue on Single Charge Tunneling, Zs. Physik 85, Suppl 3 (1991)Google Scholar
  83. 83.
    H. Grabert, M.H. Devored (eds.), Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, vol. 294, NATO ASI Series B (Plenum, New York, 1992)Google Scholar
  84. 84.
    S. Washburn, R.A. Webb, Quantum transport in small disordered samples from the diffuse to the ballistic regime. Rep. Prog. Phys. 55, 131–1383 (1992)CrossRefGoogle Scholar
  85. 85.
    D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single electron charging of quantum wells and dots. Phys. Rev. 44, 6199–6211 (1991)CrossRefGoogle Scholar
  86. 86.
    J. Bylander, T. Duty, P. Delsing, Current measurement by real-time counting of single electrons. Nature 434, 361–364 (2005)CrossRefGoogle Scholar
  87. 87.
    D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructure (Wiley, Chichester, 1999)Google Scholar
  88. 88.
    L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)CrossRefGoogle Scholar
  89. 89.
    G.W. Bryant, G.S. Solomon (eds.), Optics of Quantum Dots and Wires (Artech House Inc., London, 2005)Google Scholar
  90. 90.
    H.J. Krenner, S. Stufler, M. Sabathil et al., Recent advances in exciton-based quantum information processing in quantum dot nanostructures. New J. Phys. 7, 185–187 (2005)CrossRefGoogle Scholar
  91. 91.
    R.J. Nelson, Excitons (Chap. 8), in Excitons in Semiconductor Alloys, ed. by E.I. Rashba, M.D. Sturge (North–Holland Publ. Co., Amsterdam, 1982), pp. 319–348Google Scholar
  92. 92.
    K.K. Bajaj, Use of excitons in material characterization of semiconductor system, Mater. Sci. Eng. R. 24, 59–120 (2001)CrossRefGoogle Scholar
  93. 93.
    J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869–883 (1955)CrossRefGoogle Scholar
  94. 94.
    J.M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev. 102, 1030–1041 (1956)CrossRefGoogle Scholar
  95. 95.
    K. Seeger, Semiconductor Physics (Springer, New York, 1973)CrossRefGoogle Scholar
  96. 96.
    A. Baldareschi, N.O. Lipari, Energy levels of direct excitons in semiconductors with degenerate bands. Phys. Rev. B 3, 439–451 (1971)CrossRefGoogle Scholar
  97. 97.
    G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Exciton binding energy in quantum wells. Phys. Rev. B 26, 1974–1979 (1982)CrossRefGoogle Scholar
  98. 98.
    L.V. Keldysh, Excitons in semiconductor–dielectric nanostructures, Phys. Stat. Solidi (a) 164, 3–12 (1997)CrossRefGoogle Scholar
  99. 99.
    V.G. Plekhanov, Isotope Effect: Physics and Applications (Palmarium Academic Publishing, Saarbrücken, 2014)Google Scholar
  100. 100.
    R.C. Miller, D.A. Kleinman, W.T. Tsang, Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B2, 1134–1136 (1981); Phys. Stat. Solidi A B25, 6545–6549 (1982)CrossRefGoogle Scholar
  101. 101.
    R.L. Greene, K.K. Bajaj, D.E. Phelps, Energy levels of Wannier excitons in GaAs–Ga\(_{\rm 1-x}Al_{\rm x}\) As quantum–well structures. Phys. Stat. Solidi A B29, 1807–1812 (1984)Google Scholar
  102. 102.
    R.L. Greene, K.K. Bajaj, Binding energies of Wannier excitons in GaAs-Ga\(_{\rm 1-x}Al_{\rm x}\)As quantum-well structures. Solid State Commun. 88, 955–959 (1993)Google Scholar
  103. 103.
    M. Altarelli, Electronic structure and semiconductor-semimetal transitions. Phys. Rev. B 28, 842–845 (1983)CrossRefGoogle Scholar
  104. 104.
    M. Altarelli, Electronic structures of two-dimensional systems. J. Luminesc. 30, 472–487 (1985)CrossRefGoogle Scholar
  105. 105.
    A. Fasolino, M. Altarelli, in Two-Dimensional Systems, Heterostructures and Superlattices, vol. 43, Springer Series in Solid State Sci, ed. by G. Bauer, F. Kucher, H. Heinrich (1984), pp. 176–212Google Scholar
  106. 106.
    R. Dingle, in Festkörperprobleme, vol. 15 of Advances in Solid State Phys., ed. by H.J. Quesser (Pergamon/Vieweg, Braunschweig, 1975), p. 21Google Scholar
  107. 107.
    J. Hegarty, M.D. Sturge, Studies of exciton localization in quantum-well structures by non - linear techniques. JOSA B 2, 1143–1154 (1985)CrossRefGoogle Scholar
  108. 108.
    P. Dawson, K.J. Moore, G. Duggan et al., Unambiguous observation of the 2S state of the light - and heavy - hole excitons in GaAs - (AlGa)As MQW structures. Phys. Rev. B 34, 6007–6010 (1986)CrossRefGoogle Scholar
  109. 109.
    S.A. Moskalenko, Towards to theory of Mott excitons in alkali halides crystals. Opt. Spectr. 5, 147–155 (1958)Google Scholar
  110. 110.
    M.A. Lampert, Mobile and immobile effective-mass-particle complexes in nonmetallic solids. Phys. Rev. Lett. 1, 450–453 (1958)CrossRefGoogle Scholar
  111. 111.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mat. Sci. 51, 287–426 (2006)CrossRefGoogle Scholar
  112. 112.
    B. Hönerlage, R. Levy, J.B. Grun et al., The dispersion of excitons, polaritons and biexcitons in direct - gap semiconductors. Phys. Reports 124, 163–253 (1985)CrossRefGoogle Scholar
  113. 113.
    D. Birkedal, J. Singh, V.G. Lyssenko et al., Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 76, 672–675 (1996)CrossRefGoogle Scholar
  114. 114.
    G. Bacher, T. Kömmel, Optical properties of epitaxially grown wide bandgap single quantum dots, in Single Semiconductor Quantum Dots, ed. by P. Michler (Berlin, Springer, 2009)Google Scholar
  115. 115.
    G. Chen, T.H. Stievater, E.T. Batteh et al., Biexciton quantum coherence in a single quantum dot. Phys. Rev. Lett. 88, 117901–117904 (2002)CrossRefGoogle Scholar
  116. 116.
    Special issue on high excitation and short pulse phenomena. J. Luminesc. 30(1–4) (1985)Google Scholar
  117. 117.
    K. Herz, T. Kümmel, G. Bacher et al., Biexcitons in low-dimensional CdZnSe/ZnSe structures. Phys. Stat. Solidi (a) 164, 205–208 (1997)CrossRefGoogle Scholar
  118. 118.
    B. Jusserand, M. Cardona, Raman spectroscopy in light scattering of vibrations in superlattice, in Light Scattering in Solids, ed. by M. Cardona, G. Güntherodt (Springer, Berlin, 1989), pp. 49–152CrossRefGoogle Scholar
  119. 119.
    F. Herman, R.L. Kortum, C.D. Kuglin et al., in II - VI Semiconducting Compounds, ed. by D.G. Thomas (Benjamin, New York, 1967)Google Scholar
  120. 120.
    H. Kim, S. Rodriguez, T.R. Anthony, Electronic transitions of holes bound to boron acceptors in isotopically controlled diamond. Solid State Commun. 102, 861–865 (1997)CrossRefGoogle Scholar
  121. 121.
    M. Cardona, Dependence of the excitation energies of boron in diamond on isotopic mass. Solid State Commun. 121, 7–8 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations