Introduction to Triboluminescence



Triboluminescence phenomenon has generated extensive research interest over the years since it was reportedly discovered in the sixteenth century by Sir Francis Bacon. Triboluminescent materials are being developed into damage, stress, and impact sensors in diverse engineering systems such as civil and aerospace structures. This introductory chapter provides an overview of the place of triboluminescence within the luminescence spectrum. It also describes the three forms of triboluminescence identified in literature mainly elastico, plastico, and fracto triboluminescence. Results of studies in identifying most promising triboluminescent materials for sensors are also reported.


Triboluminescence Triboluminescent Sensors 


  1. 1.
    O’Hara, P. B., Engelson, C., & St Peter, W. (2005). Turning on the light: Lessons from luminescence. Journal of Chemical Education, 82, 49–52.CrossRefGoogle Scholar
  2. 2.
    Vishwakarma, K., Ramrakhiani, M., & Chandra, B. P. (2007). Luminescence and its application. International Journal of Nanotechnology and Applications, 1, 29–34.Google Scholar
  3. 3.
    Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Progress in triboluminescence-based smart optical sensor system. Journal of Luminescence, 131, 1407–1418.CrossRefGoogle Scholar
  4. 4.
    Virk, H. S. (2015). History of luminescence from ancient to modern times. Defect and Diffusion Forum, 361, 1–13.CrossRefGoogle Scholar
  5. 5.
    Goedeke, S., Allison, S., Womack, F., Bergeron, N., Hollerman, W. (2003). Tribolumininescence and its application to space-based damage sensors. Proceedings of the Propulsion Measurement Sensor Development Workshop. Huntsville, Alabama.Google Scholar
  6. 6.
    Kawaguchi, Y. (1998). Fractoluminescence spectra in crystalline quartz. Japanese Journal of Applied Physics: Part 1-Regular Papers Short Notes and Review Papers, 37, 1892–1896.CrossRefGoogle Scholar
  7. 7.
    Reynolds, G. T. (1997). Piezoluminescence from a ferroelectric polymer and quartz. Journal of Luminescence, 75, 295–299.CrossRefGoogle Scholar
  8. 8.
    Chandra, B. P., Elyas, M., & Majumdar, B. (1982). Dislocation models of mechanoluminescence in [gamma]- and X-irradiated alkali halides crystals. Solid State Communications, 42, 753–757.CrossRefGoogle Scholar
  9. 9.
    Chandra, B. P., & Shrivastava, K. K. (1978). Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture. Journal of Physics and Chemistry of Solids, 39, 939–940.CrossRefGoogle Scholar
  10. 10.
    Nevshupa, R., & Hiratsuka, K. (2015). Triboluminescence. In E. Gnecco & E. Meyer (Eds.), Fundamentals of friction and wear on the nanoscale. Cham: Springer International Publishing.Google Scholar
  11. 11.
    Bergeron, N. P., Hollerman, W. A., Goedeke, S. M., Hovater, M., Hubbs, W., Finchum, A., et al. (2006). Experimental evidence of triboluminescence induced by hypervelocity impact. International Journal of Impact Engineering, 33, 91–99.CrossRefGoogle Scholar
  12. 12.
    Sweeting, L. M. (2001). Triboluminescence with and without air. Chemistry of Materials, 13, 854–870.CrossRefGoogle Scholar
  13. 13.
    Walton, A. J. (1977). Triboluminesence. Advances in Physics, 26, 887–948.CrossRefGoogle Scholar
  14. 14.
    Derjaguin, B. V., Krotova, N. A., & Toporov, Y. P. (1981). Emission of high-speed electrons and other phenomena accompanying the process of breaking adhesion bonds. In J. M. Georges (Ed.), Tribology series. Amsterdam: Elsevier.Google Scholar
  15. 15.
    Miura, T., Chini, M., & Bennewitz, R. (2007). Forces, charges, and light emission during the rupture of adhesive contacts. Journal of Applied Physics, 102, 103509.CrossRefGoogle Scholar
  16. 16.
    Licoppe, C. (2013). La formation de la pratique scientifique: le discours de l’expérience en France et en Angleterre (1630–1820), La découverte.Google Scholar
  17. 17.
    Weiser, H. B. (1918). Crystalloluminescence II. The Journal of Physical Chemistry, 22, 576–595.CrossRefGoogle Scholar
  18. 18.
    Brenner, M. P., Hilgenfeldt, S., & Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74, 425.CrossRefGoogle Scholar
  19. 19.
    Tsuboi, Y., Seto, T., & Kitamura, N. (2008). Laser-induced shock wave can spark triboluminescence of amorphous sugars. The Journal of Physical Chemistry. A, 112, 6517–6521.CrossRefGoogle Scholar
  20. 20.
    Butyagin, P. Y., Yerofeyev, V., Musayelyan, I., Patrikeyev, G., Streletskii, A., & Shulyak, A. (1970). The luminescence accompanying mechanical deformation and rupture of polymers. Polymer Science U S S R, 12, 330–342.CrossRefGoogle Scholar
  21. 21.
    Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Direct view of stress distribution in solid by mechanoluminescence. Applied Physics Letters, 74, 2414–2416.CrossRefGoogle Scholar
  22. 22.
    Urbakh, M., Klafter, J., Gourdon, D., & Israelachvili, J. (2004). The nonlinear nature of friction. Nature, 430, 525–528.CrossRefGoogle Scholar
  23. 23.
    Chandra, B. P. (1998). Luminescence of solids. New York: Plenum Press.Google Scholar
  24. 24.
    Chandra, B. P., Baghel, R. N., & Chandra, V. K. (2010). Mechanoluminescenct glow curve of ZnS:Mn. Chalcogenide Letters, 7, 1–9.Google Scholar
  25. 25.
    Lu, H.-Y., & Chu, S.-Y. (2004). The mechanism and characteristics of ZnS-based phosphor powders. Journal of Crystal Growth, 265, 476–481.CrossRefGoogle Scholar
  26. 26.
    Grmela, L., Macku, R., & Tomanek, P. (2008). Near-field measurement of ZnS:Mn nanocrystal and bulk thin-film electroluminescent devices. Journal of Microscopy (Oxford), 229, 275–280.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Manzoor, K., Vadera, S. R., Kumar, N., & Kutty, T. R. N. (2004). Multicolor electroluminescent devices using doped ZnS nanocrystals. Applied Physics Letters, 84, 284–286.CrossRefGoogle Scholar
  28. 28.
    Suyver, J. F., Wuister, S. F., Kelly, J. J., & Meijerink, A. (2001). Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Letters, 1, 429–433.CrossRefGoogle Scholar
  29. 29.
    Wood, V., Halpert, J. E., Panzer, M. J., Bawendi, M. G., & Bulovic, V. (2009). Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. Nano Letters, 9, 2367–2371.CrossRefGoogle Scholar
  30. 30.
    Chandra, B. P., Xu, C. N., Yamada, H., & Zheng, X. G. (2010). Luminescence induced by elastic deformation of ZnS:Mn nanoparticles. Journal of Luminescence, 130, 442–450.CrossRefGoogle Scholar
  31. 31.
    Kobyakov, I. B., & Pado, G. S. (1968). Investigation of electrical and elastic properties of hexagonal zinc sulfide in temperature range 1.5-300 degrees K. Soviet Physics Solid State, 9, 1707.Google Scholar
  32. 32.
    Chandra, B. P., & Rathore, A. S. (1995). Classification of mechanoluminescence. Crystal Research and Technology, 30, 885–896.CrossRefGoogle Scholar
  33. 33.
    Sage, I., & Bourhill, G. (2001). Triboluminescent materials for structural damage monitoring. Journal of Materials Chemistry, 11, 231–245.CrossRefGoogle Scholar
  34. 34.
    Chudacek, I. (1966). Influence of pressure on recombination centres in piezoelectric luminophores. Czechoslovak Journal of Physics, 16, 520–524.CrossRefGoogle Scholar
  35. 35.
    Chudacek, I. (1967). Kinetics of triboluminescence of zinc sulphide I. Czechoslovak Journal of Physics, 17, 34–42.CrossRefGoogle Scholar
  36. 36.
    Chandra, B. P., Bagri, A. K., & Chandra, V. K. (2010). Mechanoluminescence response to the plastic flow of coloured alkali halide crystals. Journal of Luminescence, 130, 309–314.CrossRefGoogle Scholar
  37. 37.
    Allison, S. W., & Gillies, G. T. (1997). Remote thermometry with thermographic phosphors instrumentation and applications. The Review of Scientific Instruments, 68, 2615–2650.CrossRefGoogle Scholar
  38. 38.
    Chandra, B. P., Baghel, R. N., Singh, P. K., & Luka, A. K. (2009). Deformation-induced excitation of the luminescence centres in coloured alkali halide crystals. Radiation Effects and Defects in Solids, 164, 500–507.CrossRefGoogle Scholar
  39. 39.
    Chandra, B. P., Singh, S., Ojha, B., & Shrivastava, R. G. (1996). Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals. Pramana: Journal of Physics, 46, 127–143.CrossRefGoogle Scholar
  40. 40.
    Molotskii, M. I., Poletaev, A. V., & Shmurak, S. Z. (1989). Dislocation-induced sensibilization of photoexoelectronic emission. Fizika Tverdogo Tela, 31, 14–20.Google Scholar
  41. 41.
    Chakravarty, A., & Phillipson, T. E. (2004). Triboluminescence and the potential of fracture surfaces. Journal of Physics D: Applied Physics, 37, 2175–2180.CrossRefGoogle Scholar
  42. 42.
    Destriau, G. (1936). Recherches sur les scintillations des sulfures de zinc aux rayons@, R. Bussière.Google Scholar
  43. 43.
    Shionoya, S., Yen, W. M., & Hase, T. (1999). Phosphor handbook. Boca Raton, FL: CRC Press.Google Scholar
  44. 44.
    Hurt, C. R., Mcavoy, N., Bjorklund, S., & Filipescu, N. (1966). High intensity triboluminescence in europium tetrakis (dibenzoylmethide)-triethylammonium. Nature, 212, 179–180.CrossRefGoogle Scholar
  45. 45.
    Hollerman, W. A., Fontenot, R. S., Bhat, K. N., Aggarwal, M. D., Guidry, C. J., & Nguyen, K. M. (2012). Comparison of triboluminescent emission yields for 27 luminescent materials. Optical Materials, 34, 1517–1521.CrossRefGoogle Scholar
  46. 46.
    Olawale, D. O., Dickens, T., Lim, A., Okoli, O., Wang, B., & Sobanjo, J. O. (2010). Characterization of the triboluminescence (TL) performance of ZnS:Mn under repeated mechanical loading for smart optical damage sensor system. NDE/NDT for highways and bridges: Structural materials and technology (SMT) 2010. New York, USA: American Society of Non-Destructive Testing (ASNT).Google Scholar
  47. 47.
    Sage, I., Humberstone, L., Oswald, I., Lloyd, P., & Bourhill, G. (2001). Getting light through black composites: Embedded triboluminescent structural damage sensors. Smart Materials and Structures, 10, 332–337.CrossRefGoogle Scholar
  48. 48.
    Womack, F. N., Goedeke, S. M., Bergeron, N. P., Hollerman, W. A., & Allison, S. W. (2004). Measurement of triboluminescence and proton half brightness dose for ZnS:Mn. IEEE Transactions on Nuclear Science, 51, 1737–1741.CrossRefGoogle Scholar
  49. 49.
    Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Preparation and characteristics of highly triboluminescent ZnS film. Materials Research Bulletin, 34, 1491–1500.CrossRefGoogle Scholar
  50. 50.
    Chandra, B. P., & Zink, J. I. (1980). Triboluminescence and the dynamics of crystal fracture. Physical Review B, 21, 816–826.CrossRefGoogle Scholar
  51. 51.
    Kim, J. S., Kwon, Y. N., Shin, N., & Sohn, K. S. (2007). Mechanoluminescent SrAl2O4: Eu, Dy phosphor for use in visualization of quasidynamic crack propagation. Applied Physics Letters, 90, 241916.CrossRefGoogle Scholar
  52. 52.
    Sohn, K. S., Seo, S. Y., Kwon, Y. N., & Park, H. D. (2002). Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd). Journal of the American Ceramic Society, 85, 712–714.CrossRefGoogle Scholar
  53. 53.
    Xu, C. N., Zheng, X. G., Akiyama, M., Nonaka, K., & Watanabe, T. (2000). Dynamic visualization of stress distribution by mechanoluminescence image. Applied Physics Letters, 76, 179–181.CrossRefGoogle Scholar
  54. 54.
    Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., & Bourhill, G. (1999). Triboluminescent damage sensors. Smart Materials and Structures, 8, 504–510.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Nanotechnology Patronas Group Inc.TallahasseeUSA
  2. 2.Department of Industrial and Manufacturing EngineeringFAMU-FSU College of EngineeringTallahasseeUSA
  3. 3.Carderock DivisionNaval Surface Warfare CenterWest BethesdaUSA

Personalised recommendations