Advertisement

Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals

  • Justin A. Newman
  • Garth J. Simpson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 922)

Abstract

Nonlinear optical methods such as second harmonic generation (SHG) and two-photon excited UV fluorescence (TPE-UVF) imaging are promising approaches to address bottlenecks in the membrane protein structure determination pipeline. The general principles of SHG and TPE-UVF are discussed here along with instrument design considerations. Comparisons to conventional methods in high throughput crystallization condition screening and crystal quality assessment prior to X-ray diffraction are also discussed.

Keywords

Nonlinear optical microscopy Second harmonic generation Two-photon excited UV fluorescence Microscopy High-throughput screening Crystal detection Crystal positioning Crystal optimisation 

Notes

Acknowledgments

The authors wish to acknowledge support from the National Institutes of Health (NIH) grants NIH-R01GM103401 and NIH-R01GM103910. We would also like to thank Ellen Gualtieri from Formulatrix for supplying the glucose isomerase crystal images in Fig. 7.2.

References

  1. Anderson WF (2014) Structural genomics and drug discovery: methods and protocols, vol 1140. Humana Press Inc., TotowaCrossRefGoogle Scholar
  2. Begue NJ, Moad AJ, Simpson GJ (2009) Nonlinear optical stokes ellipsometry. 1. Theoretical framework. J Phys Chem C 113(23):10158–10165CrossRefGoogle Scholar
  3. Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA, Gabadinho J, Wang X et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11(4):916–923CrossRefGoogle Scholar
  4. Bogan MJ (2013) X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography. Anal Chem 85(7):3464–3471CrossRefPubMedGoogle Scholar
  5. Boyd RW (2008) Nonlinear optics, 3rd edn. Elsevier Inc, CambridgeGoogle Scholar
  6. Brodersen DE, Andersen GR, Andersen CBF (2013) Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallogr F Struct Biol Commun Acta 69(7):815–820CrossRefGoogle Scholar
  7. Chapman HNF, Fromme P, Barty A, White TA, Kirian RA et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566CrossRefPubMedPubMedCentralGoogle Scholar
  9. Closser RG, Gualtieri EJ, Newman JA, Simpson GJ (2013) Characterization of salt interferences in second-harmonic generation detection of protein crystals. J Appl Crystallogr 46(6):1903–1906CrossRefPubMedPubMedCentralGoogle Scholar
  10. DeWalt EL, Begue VJ, Ronau JA, Sullivan SZ, Das C, Simpson GJ (2013) Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains. Acta Crystallogr D Biol Crystallogr 69(1):74–81CrossRefPubMedGoogle Scholar
  11. DeWalt EL, Sullivan SZ, Schmitt PD, Muir RD, Simpson GJ (2014) Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Anal Chem 86(16):8448–8456CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fermann ME, Hartl I (2009) Ultrafast fiber laser technology. IEEE J Sel Top Quantum Electron 15(1):191–206CrossRefGoogle Scholar
  13. Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62(3):339–346CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fu Y, Wang H, Shi R, Cheng J-X (2006) Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt Express 14(9):3942–3951CrossRefPubMedGoogle Scholar
  15. Groves MR, Muller IB, Kreplin X, Muller-Dieckmann J (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63(4):526–535CrossRefPubMedGoogle Scholar
  16. Haupert LM, Simpson GJ (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55(4):379–386CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haupert LM, DeWalt EL, Simpson GJ (2012) Modeling the SHG activities of diverse protein crystals. Acta Crystallogr D Biol Crystallogr 68(11):1513–1521CrossRefPubMedPubMedCentralGoogle Scholar
  18. Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D Biol Crystallogr 61(1):60–66CrossRefPubMedGoogle Scholar
  19. Kissick DJ, Gualtieri EJ, Simpson GJ, Cherezov V (2009) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Anal Chem 82(2):491–497CrossRefGoogle Scholar
  20. Kissick DJ, Dettmar CM, Becker M, Mulichak AM, Cherezov V et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr D 69(5):843–851CrossRefGoogle Scholar
  21. Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallogr D Biol Crystallogr 67(10):839–846CrossRefPubMedPubMedCentralGoogle Scholar
  22. Madden JT, Toth SJ, Dettmar CM, Newman JA, Oglesbee RA, Hedderich HG, Everly RM, Becker M, Ronau JA, Buchanan SK et al (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20(4):531–540CrossRefPubMedPubMedCentralGoogle Scholar
  23. Mader K, Marone F, Hintermuller C, Mikuljan G, Isenegger A, Stampanoni M (2011) High-throughput full-automatic synchrotron-based tomographic microscopy. J Synchrotron Radiat 18(2):117–124CrossRefPubMedPubMedCentralGoogle Scholar
  24. Newman JA, Scarborough NM, Pogranichniy NR, Shrestha RK, Closser RG, Das C, Simpson GJ (2015) Intercalating dyes or enhanced contrast in second harmonic generation imaging of protein crystals. Acta Crystallogr D Biol Crystallogr 71(7):1471–1477CrossRefPubMedPubMedCentralGoogle Scholar
  25. Newman JA, Zhang S, Sullivan SZ, Dow XY, Becker M, Sheedlo MJ, Stepanov S, Carlsen MS, Everly RM, Das C et al (2016) Guiding synchrotron Xray diffraction by multimodal video-rate protein crystal imaging. J Synchrotron Radiat 23(4)CrossRefPubMedPubMedCentralGoogle Scholar
  26. Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D (2012) Imaging of protein crystals with two-photon microscopy. Biochemistry 51(8):1625–1637CrossRefPubMedPubMedCentralGoogle Scholar
  27. Redecke L, Nass K, DePonte DP, White TA, Rehders D et al (2013) Natively inhibited Trypanosoma brucei Cathepsin B structure determined by using an X-ray laser. Science 339:227–230CrossRefPubMedGoogle Scholar
  28. Sanishvili R, Yoder DW, Pothineni SB, Rosenbaum G, Xu S, Vogt S, Stepanov S, Makarov OA, Corcoran S, Benn R et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108(15):6127–6132CrossRefPubMedPubMedCentralGoogle Scholar
  29. Skarina T, Xu X, Evdokimova E, Savchenko A (2014) High-throughput crystallization screening. Methods Mol Bio 1140:159–168CrossRefGoogle Scholar
  30. Vernede X, Lavault B, Ohana J, Nurizzo D, Joly J et al (2006) UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops. Acta Crystallogr D Biol Crystallogr 62(3):253–261CrossRefPubMedGoogle Scholar
  31. Wasserman SR, Koss JW, Sojitra ST, Morisco LL, Burley SK (2012) Rapid-access, high-throughput synchrotron crystallography for drug discovery. Trends Pharmacol Sci 33(5):261–267CrossRefPubMedGoogle Scholar
  32. Wien F, Miles AJ, Lees JG, Vronning Hoffmann S, Wallace BA (2005) VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J Synchrotron Radiat 12(4):517–523CrossRefPubMedGoogle Scholar
  33. Yeates TO, Fam BC (1999) Protein crystals and their evil twins. Structure 7(2):R25–R29CrossRefPubMedGoogle Scholar
  34. Zhu Y, Zhu L-N, Guo R, Cui H-J, Ye S, Fang Q (2014) Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci Rep 4:5046CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations