Nonlinear Optical Characterization of Membrane Protein Microcrystals and Nanocrystals
Abstract
Nonlinear optical methods such as second harmonic generation (SHG) and two-photon excited UV fluorescence (TPE-UVF) imaging are promising approaches to address bottlenecks in the membrane protein structure determination pipeline. The general principles of SHG and TPE-UVF are discussed here along with instrument design considerations. Comparisons to conventional methods in high throughput crystallization condition screening and crystal quality assessment prior to X-ray diffraction are also discussed.
Keywords
Nonlinear optical microscopy Second harmonic generation Two-photon excited UV fluorescence Microscopy High-throughput screening Crystal detection Crystal positioning Crystal optimisationNotes
Acknowledgments
The authors wish to acknowledge support from the National Institutes of Health (NIH) grants NIH-R01GM103401 and NIH-R01GM103910. We would also like to thank Ellen Gualtieri from Formulatrix for supplying the glucose isomerase crystal images in Fig. 7.2.
References
- Anderson WF (2014) Structural genomics and drug discovery: methods and protocols, vol 1140. Humana Press Inc., TotowaCrossRefGoogle Scholar
- Begue NJ, Moad AJ, Simpson GJ (2009) Nonlinear optical stokes ellipsometry. 1. Theoretical framework. J Phys Chem C 113(23):10158–10165CrossRefGoogle Scholar
- Bingel-Erlenmeyer R, Olieric V, Grimshaw JPA, Gabadinho J, Wang X et al (2011) SLS crystallization platform at beamline X06DA—a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst Growth Des 11(4):916–923CrossRefGoogle Scholar
- Bogan MJ (2013) X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography. Anal Chem 85(7):3464–3471CrossRefPubMedGoogle Scholar
- Boyd RW (2008) Nonlinear optics, 3rd edn. Elsevier Inc, CambridgeGoogle Scholar
- Brodersen DE, Andersen GR, Andersen CBF (2013) Mimer: an automated spreadsheet-based crystallization screening system. Acta Crystallogr F Struct Biol Commun Acta 69(7):815–820CrossRefGoogle Scholar
- Chapman HNF, Fromme P, Barty A, White TA, Kirian RA et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470:73–77CrossRefPubMedPubMedCentralGoogle Scholar
- Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21:559–566CrossRefPubMedPubMedCentralGoogle Scholar
- Closser RG, Gualtieri EJ, Newman JA, Simpson GJ (2013) Characterization of salt interferences in second-harmonic generation detection of protein crystals. J Appl Crystallogr 46(6):1903–1906CrossRefPubMedPubMedCentralGoogle Scholar
- DeWalt EL, Begue VJ, Ronau JA, Sullivan SZ, Das C, Simpson GJ (2013) Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains. Acta Crystallogr D Biol Crystallogr 69(1):74–81CrossRefPubMedGoogle Scholar
- DeWalt EL, Sullivan SZ, Schmitt PD, Muir RD, Simpson GJ (2014) Polarization-modulated second harmonic generation ellipsometric microscopy at video rate. Anal Chem 86(16):8448–8456CrossRefPubMedPubMedCentralGoogle Scholar
- Fermann ME, Hartl I (2009) Ultrafast fiber laser technology. IEEE J Sel Top Quantum Electron 15(1):191–206CrossRefGoogle Scholar
- Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62(3):339–346CrossRefPubMedPubMedCentralGoogle Scholar
- Fu Y, Wang H, Shi R, Cheng J-X (2006) Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. Opt Express 14(9):3942–3951CrossRefPubMedGoogle Scholar
- Groves MR, Muller IB, Kreplin X, Muller-Dieckmann J (2007) A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallogr D Biol Crystallogr 63(4):526–535CrossRefPubMedGoogle Scholar
- Haupert LM, Simpson GJ (2011) Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods 55(4):379–386CrossRefPubMedPubMedCentralGoogle Scholar
- Haupert LM, DeWalt EL, Simpson GJ (2012) Modeling the SHG activities of diverse protein crystals. Acta Crystallogr D Biol Crystallogr 68(11):1513–1521CrossRefPubMedPubMedCentralGoogle Scholar
- Judge RA, Swift K, Gonzalez C (2005) An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallogr D Biol Crystallogr 61(1):60–66CrossRefPubMedGoogle Scholar
- Kissick DJ, Gualtieri EJ, Simpson GJ, Cherezov V (2009) Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases. Anal Chem 82(2):491–497CrossRefGoogle Scholar
- Kissick DJ, Dettmar CM, Becker M, Mulichak AM, Cherezov V et al (2013) Towards protein-crystal centering using second-harmonic generation (SHG) microscopy. Acta Crystallogr D Biol Crystallogr D 69(5):843–851CrossRefGoogle Scholar
- Madden JT, DeWalt EL, Simpson GJ (2011) Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallogr D Biol Crystallogr 67(10):839–846CrossRefPubMedPubMedCentralGoogle Scholar
- Madden JT, Toth SJ, Dettmar CM, Newman JA, Oglesbee RA, Hedderich HG, Everly RM, Becker M, Ronau JA, Buchanan SK et al (2013) Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. J Synchrotron Radiat 20(4):531–540CrossRefPubMedPubMedCentralGoogle Scholar
- Mader K, Marone F, Hintermuller C, Mikuljan G, Isenegger A, Stampanoni M (2011) High-throughput full-automatic synchrotron-based tomographic microscopy. J Synchrotron Radiat 18(2):117–124CrossRefPubMedPubMedCentralGoogle Scholar
- Newman JA, Scarborough NM, Pogranichniy NR, Shrestha RK, Closser RG, Das C, Simpson GJ (2015) Intercalating dyes or enhanced contrast in second harmonic generation imaging of protein crystals. Acta Crystallogr D Biol Crystallogr 71(7):1471–1477CrossRefPubMedPubMedCentralGoogle Scholar
- Newman JA, Zhang S, Sullivan SZ, Dow XY, Becker M, Sheedlo MJ, Stepanov S, Carlsen MS, Everly RM, Das C et al (2016) Guiding synchrotron Xray diffraction by multimodal video-rate protein crystal imaging. J Synchrotron Radiat 23(4)CrossRefPubMedPubMedCentralGoogle Scholar
- Padayatti P, Palczewska G, Sun W, Palczewski K, Salom D (2012) Imaging of protein crystals with two-photon microscopy. Biochemistry 51(8):1625–1637CrossRefPubMedPubMedCentralGoogle Scholar
- Redecke L, Nass K, DePonte DP, White TA, Rehders D et al (2013) Natively inhibited Trypanosoma brucei Cathepsin B structure determined by using an X-ray laser. Science 339:227–230CrossRefPubMedGoogle Scholar
- Sanishvili R, Yoder DW, Pothineni SB, Rosenbaum G, Xu S, Vogt S, Stepanov S, Makarov OA, Corcoran S, Benn R et al (2011) Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. Proc Natl Acad Sci U S A 108(15):6127–6132CrossRefPubMedPubMedCentralGoogle Scholar
- Skarina T, Xu X, Evdokimova E, Savchenko A (2014) High-throughput crystallization screening. Methods Mol Bio 1140:159–168CrossRefGoogle Scholar
- Vernede X, Lavault B, Ohana J, Nurizzo D, Joly J et al (2006) UV laser-excited fluorescence as a tool for the visualization of protein crystals mounted in loops. Acta Crystallogr D Biol Crystallogr 62(3):253–261CrossRefPubMedGoogle Scholar
- Wasserman SR, Koss JW, Sojitra ST, Morisco LL, Burley SK (2012) Rapid-access, high-throughput synchrotron crystallography for drug discovery. Trends Pharmacol Sci 33(5):261–267CrossRefPubMedGoogle Scholar
- Wien F, Miles AJ, Lees JG, Vronning Hoffmann S, Wallace BA (2005) VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J Synchrotron Radiat 12(4):517–523CrossRefPubMedGoogle Scholar
- Yeates TO, Fam BC (1999) Protein crystals and their evil twins. Structure 7(2):R25–R29CrossRefPubMedGoogle Scholar
- Zhu Y, Zhu L-N, Guo R, Cui H-J, Ye S, Fang Q (2014) Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot. Sci Rep 4:5046CrossRefPubMedPubMedCentralGoogle Scholar