Detergents in Membrane Protein Purification and Crystallisation

  • Anandhi Anandan
  • Alice VrielinkEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 922)


Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.


Detergents Lipids Micelles Membrane proteins Protein purification Crystallisation 



The authors wish to thank Dr Isabel Moraes for helpful discussions. Additionally the authors acknowledge funding by grants from the National Health and Medical Research Council of Australia (APP1003697 and APP1078642).


  1. Anglin TC, Conboy JC (2008) Lateral pressure dependence of the phospholipid transmembrane diffusion rate in planar-supported lipid bilayers. Biophys J 95:186–193CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43:427–434CrossRefPubMedGoogle Scholar
  3. Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci. Chapter 4:Unit 4.8.1–4.8.30. doi: 10.1002/0471140864.ps0408s53
  4. Bae HE, Gotfryd K, Thomas J, Hussain H, Ehsan M et al (2015) Deoxycholate-based glycosides (DCGs) for membrane protein stabilisation. ChemBioChem 16:1454–1459CrossRefPubMedGoogle Scholar
  5. Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340CrossRefPubMedGoogle Scholar
  6. Bordag N, Keller S (2010) Alpha-helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 163:1–26CrossRefPubMedGoogle Scholar
  7. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589CrossRefPubMedGoogle Scholar
  8. Caffrey M (2003) Membrane protein crystallization. J Struct Biol 142:108–132CrossRefPubMedGoogle Scholar
  9. Chae PS, Gotfryd K, Pacyna J, Miercke LJ, Rasmussen SG et al (2010a) Tandem facial amphiphiles for membrane protein stabilization. J Am Chem Soc 132:16750–16752CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R et al (2010b) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cho KH, Bae HE, Das M, Gellman SH, Chae PS (2014) Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization. Chem Asian J 9:632–638CrossRefPubMedGoogle Scholar
  12. Damodaran S, Song KB (1990) Effect of water structure makers and breakers on the adsorption of β-casein at the air—water interface. Colloids Surf 50:75–86CrossRefGoogle Scholar
  13. Durand G, Abla M, Ebel C, Breyton C (2014) New amphiphiles to handle membrane proteins: “Ménage à Trois” between chemistry, physical chemistry, and biochemistry. In: Membrane proteins production for structural analysis. Springer, New York, pp 205–251Google Scholar
  14. Franzin CM, Teriete P, Marassi FM (2007) Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129:8078–8079CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furth AJ, Bolton H, Potter J, Priddle JD (1984) Separating detergent from proteins. Methods Enzymol 104:318–328CrossRefPubMedGoogle Scholar
  16. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefPubMedGoogle Scholar
  17. Garavito RM, Picot D, Loll PJ (1996) Strategies for crystallizing membrane proteins. J Bioenerg Biomembr 28:13–27CrossRefPubMedGoogle Scholar
  18. Gohon Y, Popot J-L (2003) Membrane protein–surfactant complexes. Curr Opin Colloid 8:15–22CrossRefGoogle Scholar
  19. Goyal PS, Aswal VK (2001) Micellar structure and inter-micelle interactions in micellar solutions: results of small angle neutron scattering studies. Curr Sci 80:972–979Google Scholar
  20. Gu T, Sjöblom J (1992) Surfactant structure and its relation to the Krafft point, cloud point and micellization: some empirical relationships. Colloids Surf 64:39–46CrossRefGoogle Scholar
  21. Helenius A, McCaslin DR, Fries E, Tanford C (1979) Properties of detergents. Method Enzymol 56:734–749CrossRefGoogle Scholar
  22. Hitscherich C, Aseyev V, Wiencek J, Loll PJ (2001) Effects of PEG on detergent micelles: implications for the crystallization of integral membrane proteins. Acta Crystallogr D Biol Crystallogr 57(7):1020–1029CrossRefPubMedGoogle Scholar
  23. Hong WX, Baker KA, Ma X, Stevens RC, Yeager M, Zhang Q (2010) Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: human connexin 26. Langmuir 26:8690–8696CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ilgu H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D (2014) Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 106:1660–1670CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jastrzebska B, Goc A, Golczak M, Palczewski K (2009) Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. Biochemistry 48:5159–5170CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kang HJ, Lee C, Drew D (2013) Breaking the barriers in membrane protein crystallography. Int J Biochem Cell Biol 45:636–644CrossRefPubMedGoogle Scholar
  27. Kefala G, Ahn C, Krupa M, Esquivies L, Maslennikov I, Kwiatkowski W, Choe S (2010) Structures of the OmpF porin crystallized in the presence of foscholine-12. Protein Sci 19:1117–1125CrossRefPubMedPubMedCentralGoogle Scholar
  28. Keyes M, Gray D, Kreh K, Sanders C (2003) Solubilizing detergents for membrane proteins. Methods and results in crystallization of membrane proteins. International University Line, La Jolla, pp 15–33Google Scholar
  29. Knol J, Sjollema K, Poolman B (1998) Detergent-mediated reconstitution of membrane proteins. Biochemistry 37:16410–16415CrossRefPubMedGoogle Scholar
  30. Kragh-Hansen U, le Maire M, Noel JP, Gulik-Krzywicki Tand Moller JV (1993) Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry 32:1648–1656CrossRefPubMedGoogle Scholar
  31. Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lasch J (1995) Interaction of detergents with lipid vesicles. Biochim Biophys Acta 1241:269–292CrossRefPubMedGoogle Scholar
  33. le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111CrossRefPubMedGoogle Scholar
  34. Lee SC, Bennett BC, Hong WX, Fu Y, Baker KA et al (2013) Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins. Proc Natl Acad Sci U S A 110:E1203–E1211CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lichtenberg D, Opatowski E, Kozlov MM (2000) Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles. Biochim Biophys Acta 1508:1–19CrossRefPubMedGoogle Scholar
  36. Lichtenberg D, Ahyayauch H, Goni FM (2013) The mechanism of detergent solubilization of lipid bilayers. Biophys J 105:289–299CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lin CM, Chang GP, Tsao HK, Sheng YJ (2011) Solubilization mechanism of vesicles by surfactants: effect of hydrophobicity. J Chem Phys 135(4):045102CrossRefPubMedGoogle Scholar
  38. Linke D (2009) Detergents: an overview. Methods Enzymol 463:603–617, Elsevier ScienceGoogle Scholar
  39. Lorch M, Batchelor R (2011) Stabilizing membrane proteins in detergent and lipid systems. In: Production of membrane proteins: strategies for expression and isolation. Wiley-VCH Verlg GmbH & Co. KGaA, Weinheim, pp 361–390CrossRefGoogle Scholar
  40. Lórenz-Fonfría V, Perálvarez-Marín A, Padrós E, Lazarova T (2011) Solubilization, purification, and characterization of integral membrane proteins. In: Production of membrane proteins: strategies for expression and isolation. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 317–360CrossRefGoogle Scholar
  41. Matar-Merheb R, Rhimi M, Leydier A, Huche F, Galian C et al (2011) Structuring detergents for extracting and stabilizing functional membrane proteins. PLoS ONE 6(3):e18036CrossRefPubMedPubMedCentralGoogle Scholar
  42. Melnyk RA, Partridge AW, Yip J, Wu Y, Goto NK, Deber CM (2003) Polar residue tagging of transmembrane peptides. Biopolymers 71:675–685CrossRefPubMedGoogle Scholar
  43. Moraes I, Evans G, Sanchez-Weatherby J, Newstead S, Stewart PD (2014) Membrane protein structure determination – the next generation. Biochim Biophys Acta 1838:78–87CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nagarajan R (2002) Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir 18:31–38CrossRefGoogle Scholar
  45. Nagarajan R (2011) Amphiphilic surfactants and amphiphilic polymers: principles of molecular assembly. In: Amphiphiles: molecular assembly and applications. American Chemical Society, Oxford University Press, Washington, DC, pp 1–22Google Scholar
  46. Neugebauer JM (1990) Detergents: an overview. Methods Enzymol 182:239–253CrossRefPubMedGoogle Scholar
  47. Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L (2013) Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS ONE 8:e62488CrossRefPubMedPubMedCentralGoogle Scholar
  48. Oliver RC, Lipfert J, Fox DA, Lo RH, Kim JJ et al (2014) Tuning micelle dimensions and properties with binary surfactant mixtures. Langmuir 30:13353–13361CrossRefPubMedGoogle Scholar
  49. Ostermeier C, Michel H (1997) Crystallization of membrane proteins. Curr Opin Struct Biol 7:697–701CrossRefPubMedGoogle Scholar
  50. Otzen DE (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J 83:2219–2230CrossRefPubMedPubMedCentralGoogle Scholar
  51. Otzen D (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591CrossRefPubMedGoogle Scholar
  52. Parker JL, Newstead S (2012) Current trends in alpha-helical membrane protein crystallization: an update. Protein Sci 21:1358–1365CrossRefPubMedPubMedCentralGoogle Scholar
  53. Prive GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397CrossRefPubMedGoogle Scholar
  54. Ray A, Nemethy G (1971) Effects of ionic protein denaturants on micelle formation by nonionic detergents. J Am Chem Soc 93:6787–6793CrossRefPubMedGoogle Scholar
  55. Renthal R (2006) An unfolding story of helical transmembrane proteins. Biochemistry 45:14559–14566CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rollauer SE, Tarry MJ, Graham JE, Jaaskelainen M, Jager F et al (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492:210–214CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rosen MJ, Kunjappu JT (2012) Characteristic features of surfactants. In: Surfactants and interfacial phenomena. Wiley, Hoboken, pp 1–38CrossRefGoogle Scholar
  58. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D et al (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rummel G, Rosenbusch J (2003) Crystallization of bacterial outer membrane proteins from detergent solutions: porin as a model. Methods and results in crystallization of membrane proteins. International University Line, La Jolla, pp 101–129 Google Scholar
  60. Santonicola MG, Lenhoff AM, Kaler EW (2008) Binding of alkyl polyglucoside surfactants to bacteriorhodopsin and its relation to protein stability. Biophys J 94:3647–3658CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schagger H, Link TA, Jagow G (2003) Purification strategies for membrane proteins. In: Membrane protein purification and crystallization: a practical guide. Academic press, Amsterdam/Boston, pp 3–21Google Scholar
  62. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K (2003) Resistance of cell membranes to different detergents. Proc Natl Acad Sci U S A 100:5795–5800CrossRefPubMedPubMedCentralGoogle Scholar
  63. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:05–117Google Scholar
  64. Snijder HJ, Timmins PA, Kalk KH, Dijkstra BW (2003) Detergent organisation in crystals of monomeric outer membrane phospholipase A. J Struct Biol 141:122–131CrossRefPubMedGoogle Scholar
  65. Sonoda Y, Newstead S, Hu NJ, Alguel Y, Nji E et al (2011) Benchmarking membrane protein detergent stability for improving throughput of high-resolution X-ray structures. Structure 19:17–25CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tate CG (2010) Practical considerations of membrane protein instability during purification and crystallisation. In: Heterologous expression of membrane proteins. Springer, New York, pp 187–203CrossRefGoogle Scholar
  67. Tulumello DV, Deber CM (2012) Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms. Biochim Biophys Acta 1818:1351–1358CrossRefPubMedGoogle Scholar
  68. Wiener MC (2004) A pedestrian guide to membrane protein crystallization. Methods 34:364–372CrossRefPubMedGoogle Scholar
  69. Wiseman B, Kilburg A, Chaptal V, Reyes-Mejia GC, Sarwan J, Falson P, Jault JM (2014) Stubborn contaminants: influence of detergents on the purity of the multidrug ABC transporter BmrA. PLoS ONE 9(12):e114864CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhang Q, Tao H, Hong WX (2011) New amphiphiles for membrane protein structural biology. Methods 55:318–323CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations