Air Pollution and the Skin Health

  • Adriano Heemann Pereira NetoEmail author
  • Luiza Metzdorf
  • Leandro Linhares Leite
  • Renan Rangel Bonamigo


This chapter discusses the importance of air pollution in human health, outlining its relationship with cutaneous tegument and in particular with early aging, atopic dermatitis, urticaria, acne, melasma, and skin cancer. Aspects of epidemiology and physiopathology of such associations are discussed. Preventive medical interventions are proposed to improve the population’s quality of life.


Air pollution Free radicals Skin barrier Microflora Dermatoses Skin Early aging Atopic dermatitis Urticaria Acne Melasma Skin cancer 




Natural process that leads to progressive loss of structure and function of all tissues.

Black carbon 

Environmental pollutant rated ultrafine particulate from diesel exhausts. It is a carcinogen class 1. It is associated with some types of cancer, for example bladder cancer, pleural mesothelioma, and malignant melanoma.


Acne variant associated with exposure to environmental pollutants that develops after systemic poisoning by halogenated aromatic hydrocarbons. It is characterized by an acneiform eruption consisting of comedones (blackheads and whiteheads), pustules, and cysts.

Extrinsic aging 

Process associated with exposure to free radicals created by numerous environmental factors such as ultraviolet radiation and cigarette smoke. Signs of extrinsic aging are thick wrinkles, irregular pigmentation spots, and elastosis.

Intrinsic aging 

Process related to the accumulation over time of cell damage by reactive oxygen species from the organism itself.

Sensitive skin 

Inflammatory multifactorial syndrome with cutaneous hyperreactivity signals not immune to stimuli generally well tolerated, clinically characterized by subjective complaints of discomfort (burning, itching, xerosis, erythema, papules).


  1. 1.
    Xinwei L, Xiaolan Z, Loretta YL, Hao C. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ Res. 2014;128:27–34.CrossRefGoogle Scholar
  2. 2.
    World Health Organization (WHO). WHO’s ambient air pollution database – update 2014. 2014. Available from: results2014.pdf. Cited 2016 Aug 19.
  3. 3.
    Molina MJ, Molina LT. Megacities and atmospheric pollution. J Air Waste Manage Assoc. 2004;54(6):644–80.CrossRefGoogle Scholar
  4. 4.
    Gurjar BR, Butler TM, Lawrence MG, Lelieveld J. Evaluation of emissions and air quality in megacities. Atmos Environ. 2008;42:1593–606.CrossRefGoogle Scholar
  5. 5.
    Ministério do Meio Ambiente. Poluentes Atomosféricos [internet]. Brasilia: Ministerio do Meio Ambiente. Cited 2016 Aug 19. Available from:
  6. 6.
    Mancebo SE, Wang SQ. Recognizing the impact of ambient air pollution on skin health. J Eur Acad Dermatol Venereol. 2015;29(12):2326–32.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    US Environmental Protection Agency (EPA). Air quality trends [internet]. North Carolina. Updated 2016, Aug. Cited 2016 Aug 09. Available from:
  8. 8.
    Krutmann J, Liu W, Li L, Pan X, Crawford M, Sore G, Seite S. Pollution and skin: from epidemiological and mechanistic studies to clinical implication. J Dermatol Sci. 2014;76:163–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim EK, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016;152:126–34.CrossRefPubMedGoogle Scholar
  10. 10.
    DetectCarbonMonoxide. CO Knowledge Center [internet]. Cited 2016 Aug 17. Available from:
  11. 11.
    World Health Organization (WHO). Air pollution levels rising in many of the world’s poorest cities [internet]. Geneve: WHO [updated 2016 MAY 12; cited 2016 Aug 10]. Available from:
  12. 12.
    US Environmental Protection Agency. Air quality trends [internet]. [Updated 2014 April 21; Cited 2016 Aug 17]. Available from:
  13. 13.
    Marnitez PJP, Andrade MF, Miranda RM. Traffic-related air quality trends in São Paulo, Brazil. Geophys Res Atmos. 2015;120:6290–304.CrossRefGoogle Scholar
  14. 14.
    Ministério do Meio Ambiente. Cidades Sustentáveis: Qualidade do Ar [internet]. Brasilia: Ministerio do Meio Ambiente. Cited 2016 Aug 19. Available in:
  15. 15.
    Copenhagen Consensus Center. Brazil perspectives: air pollution [internet]. Copenhagen. [Cited 2016 Aug 14]. Available from:
  16. 16.
    Kumar P, de Fatima MA, Ynoue RY, Fornaro A, de Freitas ED, Martins J, et al. New directions: from biofuels to wood stoves: the modern and ancient air quality challenges in the megacity of Sao Paulo. Atmos Environ. 2016;140:364–9.CrossRefGoogle Scholar
  17. 17.
    Air Quality Index (AQI). São Paulo air pollution: real-time Air Quality Index (AQI). [Updated 2016 Aug 14. Cited 2016 Aug 14]. Available from
  18. 18.
    World Health Organization (WHO). Ambient (outdoor) air quality and health [internet]. Geneve: WHO [updated 2014 Mar; cited 2016 Aug 14]. Available from:
  19. 19.
    Vormittag EM, Rodrigues CG, Miranda MJ, Cavalcanti JA, da Costa RR, Camargo CA, et al. Avaliação do Impacto da Poluição Atmosférica no Estado de São Paulo sob a Visão da Saúde. Instituto Saúde e Sustentabilidade. 2013. Disponivel em: Acesso em 19/08/2016.
  20. 20.
    Lydia Ramsey. About 80% of all cities have worse air quality than what’s considered healthy – here are the 15 with the worst air pollution. Business Insider Inc. [updated 2016 May; Cited 2016 Aug 15]. Available from:
  21. 21.
    Goldsmith LA. Skin effects of air pollution. Otolaryngol Head Neck Surg. 1996;114(2):217–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Suskind RR. Chloracne, “the hallmark of dioxin intoxication”. Scand J Work Environ Health. 1985;11:165–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G. Effects of long term exposure to air pollution on natural cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014.; 1;383(9919):785–95.CrossRefPubMedGoogle Scholar
  24. 24.
    Marcilio I, Gouveia N. Quantifying the impact of air pollution on the urban population of Brazil. Cad Saúde Pública. 2007;23(4):S529.CrossRefPubMedGoogle Scholar
  25. 25.
    Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, et al. Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect. 2005;113(2):201–6.Google Scholar
  26. 26.
    Bauer M, Moebus S, Möhlenkamp S, Dragano N, Nonnemacher M, et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis. results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol. 2010;56(22):1803–8.Google Scholar
  27. 27.
    Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, Beckermann B, et al. Ambient air pollution and the progression of atherosclerosis in adults. PLoS ONE. 2010;5(2):e9096.Google Scholar
  28. 28.
    Hoffmann B, Moebus S, Möhlenkamp S, Stang A, Lehmann N, et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation. 2007;116(5):489–96.Google Scholar
  29. 29.
    Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631–49.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, Brauer M. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect. 2010;118(2):284–90.CrossRefPubMedGoogle Scholar
  31. 31.
    Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, et al. Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. JAMA. 2002;287(9):1132–41.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heather E, Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry. 2013;70(1):71–7.CrossRefGoogle Scholar
  33. 33.
    Anoop SV, Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, et al. Short term exposure to air pollution and stroke: systematic review and meta-analysis. BMJ. 2015;350:h1295.Google Scholar
  34. 34.
    Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J Invest Dermatol. 2003;120:168–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Vierkotter A, Krutmann J. Environmental influences on skin aging and ethnic- specific manifestations. Dermatoendocrinology. 2012;4:227–31.CrossRefGoogle Scholar
  36. 36.
    Vierkotter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Kramer U, et al. Airborne particle exposure and extrinsic skin aging. J Investig Dermatol. 2010;130:2719–26.CrossRefPubMedGoogle Scholar
  37. 37.
    Lee JK, Ko SH, Ye SK, Chung MH. 8-Oxo-2′-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression. J Dermatol Sci. 2013;70:49–57.CrossRefPubMedGoogle Scholar
  38. 38.
    Wolf AM, Nishimaki K, Kamimura N, Ohta S. Real-time monitoring of oxidative stress in live mouse skin. J Investig Dermatol. 2014;134:1701–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Yun SP, Lee SJ, Oh SY, Jung YH, Ryu JM, Suh HN, et al. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells. Br J Pharmacol. 2014;171:3283–97.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wolter S, Price HN. Atopic dermatitis. Pediatr Clin N Am. 2014;61:241–60.CrossRefGoogle Scholar
  41. 41.
    Kim J, Kim EH, Oh I, Jung K, Han Y, Cheong HK, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution. J Allergy Clin Immunol. 2013;132:495–8. e491CrossRefPubMedGoogle Scholar
  42. 42.
    Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Kramer U, et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med. 2008;177:1331–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Song S, Lee K, Lee YM, Lee JH, Lee SI, Yu SD, et al. Acute health effects of urban fine and ultrafine particles on children with atopic dermatitis. Environ Res. 2011;111:394–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Eberlein-Konig B, Przybilla B, Kuhnl P, Pechak J, Gebefugi I, Kleinschmidt J, et al. Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol. 1998;101:141–3.CrossRefPubMedGoogle Scholar
  45. 45.
    Farage M, Maibach HI. Sensitive skin: closing in on a physiological cause. Contact Dermat. 2010;62:137–49.CrossRefGoogle Scholar
  46. 46.
    Kaplan AP. Urticaria and angioedema. In: Adkinson NF, Bochner BS, Busse WW, et al., editors. Middleton’s allergy: principles and practice, vol. 2. 7th ed. St Louis: Mosby; 2009. p. 1063.CrossRefGoogle Scholar
  47. 47.
    Kousha T, Valacchi G. The air quality health index and emergency department visits for urticaria in Windsor. Can J Toxicol Environ Health A. 2015;78(8):524–33. doi: Scholar
  48. 48.
    Xu F, Yan S, Wu M, Li F, Xu X, Song W, et al. Ambient ozone as a risk factor for skin disorders. Br J Dermatol. 2011;165:99–228.CrossRefGoogle Scholar
  49. 49.
    Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, et al. An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci. 2011;62:42–9.PubMedGoogle Scholar
  50. 50.
    IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. Chemical agents and related occupations. Lyon, International Agency for Research on Cancer; 2012.Google Scholar
  51. 51.
    IARC Monographs on the evaluation of carcinogenic risks to humans, no. 100F. BENZO[a]PYRENE. Available from:
  52. 52.
    Ju Q, Zouboulis CC, Xia L. Environmental pollution and acne: chloracne. Dermatoendocrinol. 2009;1(3):125–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Panteleyev AA, Bickers DR. Dioxin-induced chloracne – reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp Dermatol. 2006;15:705–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Geusau A, Tschachler E, Meixner M, et al. Olestra increases faecal excretion of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Lancet. 1999;354:1266–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Balkrishnan R, McMichael AJ, Camacho FT, Saltzberg F, Housman TS, Grummer S, Feldman SR, Chren MM. Development and validation of a health-related quality of life instrument for women with melasma. Br J Dermatol. 2003;149(3):572.CrossRefPubMedGoogle Scholar
  56. 56.
    Grimes PE. Melasma. Etiologic and therapeutic considerations. Arch Dermatol. 1995;131(12):1453.CrossRefPubMedGoogle Scholar
  57. 57.
    Lutfi RJ, Fridmanis M, Misiunas AL, Pafume O, Gonzalez EA, Villemur JA, Mazzini MA, Niepomniszcze H. Association of melasma with thyroid autoimmunity and other thyroidal abnormalities and their relationship to the origin of the melasma. J Clin Endocrinol Metab. 1985;61(1):28.CrossRefPubMedGoogle Scholar
  58. 58.
    Passeron T. Melasma pathogenesis and influencing factors – an overview of the latest research. J Eur Acad Dermatol Venereol. 2013;27(Suppl 1):5–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Roberts WE. Pollution as a risk factor for the development of melasma and other skin disorders of facial hyperpigmentation – is there a case to be made? J Drugs Dermatol. 2015;14(4):337–41.PubMedGoogle Scholar
  60. 60.
    Shankar D, Somani VK, Kohli M, Sharad J. A cross-sectional, multicentric clinico-epidemiological study of melasma in India. Dermatol Ther (Heidelb). 2014;4:71–81.CrossRefGoogle Scholar
  61. 61.
    Sivayathorn A. Melasma in orientals clinical drug investigation. Indian J Dermatol. 2012;10(2 Supplement):34–40.Google Scholar
  62. 62.
    Kang WH, Yoon KH, Lee ES, KIm J, et al. Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 2002;146:228–37.Google Scholar
  63. 63.
    Noh TK, Choi SJ, Chung BY, Kang JS, et al. Inflammatory features of melasma lesions in Asian skin. J Dermatol. 2014;41(9):788–94.CrossRefPubMedGoogle Scholar
  64. 64.
    UV exposure and sun protective practices. Cancer trends progress report – March 2015 Update. National Cancer Institute. Accessed 18 Aug 2016.
  65. 65.
    Cancer Statistics Review, SEER 1975-2013 (NCI) (2016) Accessed 18 Aug 16.
  66. 66.
    Eftim SE, Samet JM, Janes H, McDermott A, Dominici F. Fine particulate matter and mortality: a comparison of the six cities and American Cancer Society cohorts with a medicare cohort. Epidemiology. 2008;19:209–16.CrossRefPubMedGoogle Scholar
  67. 67.
    Puntoni R, Ceppi M, Gennaro V, Ugolini D, Puntoni M, La Manna G, et al. Occupational exposure to carbon black and risk of cancer. Cancer Causes Control. 2004;15:511–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Boffetta N, Jourenkova P, Gustavsson. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8:444–72.CrossRefPubMedGoogle Scholar
  69. 69.
    Larsen RK 3rd, Baker JE. Source apportionment of polycyclic aromatic hydrocar- bons in the urban atmosphere: a comparison of three methods. Environ Sci Technol. 2003;37:1873–81.CrossRefPubMedGoogle Scholar
  70. 70.
    Matsumoto Y, Ide F, Kishi R, Akutagawa T, Sakai S, Nakamura M, et al. Aryl hydrocarbon receptor plays a significant role in mediating airborne particulate- induced carcinogenesis in mice. Environ Sci Technol. 2007;41:3775–80.CrossRefPubMedGoogle Scholar
  71. 71.
    Burke KE, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25:219–24.CrossRefPubMedGoogle Scholar
  72. 72.
    Thiele JJ, Traber MG, Polefka TG, Cross CE, Packer L. Ozone-exposure depletes vitamin E and induces lipid peroxidation in murine stratum cor- neum. J Invest Dermatol. 1997;108:753–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Weber SU, Thiele JJ, Cross CE, Packer L. Vitamin C, uric acid and glutathione gradients in murine stratum corneum and their susceptability to ozone exposure. J Invest Dermatol. 1999;113:1128–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Thiele JJ, Traber MG, Podda M, Tsang K, Cross CE, Packer L. Ozone depletes tocopherols and tocotrienols topically applied to murine skin. FEBS Lett. 1997;401:167–70.CrossRefPubMedGoogle Scholar
  75. 75.
    Kim HO, Kim JH, Cho SI, Chung BY, Ahn IS, Lee CH, et al. Improvement of atopic dermatitis severity after reducing indoor air pollutants. Ann Dermatol. 2013;25:292–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tigges J, Haarmann-Stemmann T, Vogel CF, Grindel A, Hübenthal U, Brenden H, et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5, 6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J Invest Dermatol. 2014;134:556–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  • Adriano Heemann Pereira Neto
    • 1
    Email author
  • Luiza Metzdorf
    • 1
  • Leandro Linhares Leite
    • 2
  • Renan Rangel Bonamigo
    • 3
    • 4
    • 5
  1. 1.Federal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Dermatology Service of Hospital de Clínicas de Porto AlegreFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Dermatology Service, Hospital de Clínicas de Porto Alegre (HCPA)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  4. 4.Sanitary Dermatology Service of the Department of Health of Rio Grande do Sul State (ADS-SES)Porto AlegreBrazil
  5. 5.Graduate Pathology Program of Federal University of Health Sciences of Porto AlegrePorto AlegreBrazil

Personalised recommendations