Rosacea is a frequent chronic dermatosis on the central region of the face. It is underdiagnosed and can have a significant impact on the sufferers’ quality of life. It is more often seen in an intermediate age range and is prevalent in women, although it can occur during childhood and severe cases are seen in men. Rosacea has a multiple etiopathogenic basis and different clinical types. The vascular and the inflammatory processes in a deconstructing dermal framework account for the most often found clinical types: erythematous telangiectatic, papulopustular, and phymatous. Ocular rosacea should be properly investigated. The differential diagnosis is made mainly with other facial dermatoses, such as acne, seborrheic dermatitis, atopic dermatitis, periorificial dermatitis, contact dermatitis, dermatomyositis, and lupus erythematosus. Treatment includes refraining from exposition to triggering factors and the use of topical and systemic medication. Topical metronidazole, ivermectin, azelaic acid, and brimonidine, as well as systemic doxycycline, carvedilol, and isotretinoin, are drugs of choice, besides different types of laser.


Rosacea Phyma Demodex Doxycycline Metronidazole Brimonidine Ivermectin 




Antimicrobial peptides found in the mammalian tissue induced by injury or inflammation. They belong to the immune system and work as activators and controllers of immune reactions.


The most common symptom of rosacea, characterized by a transient facial blush or redness. The skin can be lightly rose as if blushed, or it may seem slightly sunburned. Sufferers may refer to itching or pricking during rosacea flares.

GRADE (Grading of Recommendations Assessment, Development, and Evaluation)

System developed by a group of collaborative researchers aiming at the creation of a universal, transparent, and sensitive system to grade the quality of scientific evidence and recommendation power. The GRADE system classifies evidence quality (reliability of the used information) at four levels: high (powerful reliability of the real effect is near the assessed one), moderate (moderate reliability of the assessed effect), low (limited effect reliability), and very low (very limited reliability of the effect assessment). There is a significant uncertainty degree in the findings. Evidence from randomized clinical trials begins with high evidence level; evidence from observational studies begins with low evidence level.


A polypeptide of proteolytic reaction which acts upon protein substrates of varied nature. Kallikrein has a vasodilating direct action, but also an indirect one because of its proteolytic feature.


An important group of zinc-dependent proteolytic enzymes (endopeptidases) that account for the degradation of the extracellular matrix and the basal membranes. The metalloproteinases degrade the matrix macromolecules including interstitial collagen, fibronectin, lamina, and proteoglycan, among others. The expression of many metalloproteinases is increased in the skin of rosacea patients.


Represented by clinical changes resulting from acute or chronic events determined by biochemical and molecular processes caused by ultraviolet radiation exposure.


A rosacea phase determined by sebaceous gland hyperplasia, initially showing erythema, edema, and follicular orifice dilation, followed by the development of fibrous tissue. This process can affect the nose (rhinophyma), the mentum/chin (gnatophyma), the forehead (metophyma), the ears (otophyma), and the eyelids (blepharophyma).


The transcriptome corresponds to the genetic code fraction (DNA) transcribed by the RNA polymerase into the RNA molecules, that is, an organ, tissue, or cell lineage’s total set of transcripts (RNA messengers, ribosomal RNAs, transporter RNAs, and microRNAs).


  1. 1.
    Abram K, Silm H, Maaroos HI, Oona M. Risk factors associated with rosacea. J Eur Acad Dermatol Venereol. 2010;24(5):565–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Lomholt G. Prevalence of skin diseases in a population; a Census Study from the Faroe Islands. Dan Med Bull. 1964;11:1–7.PubMedGoogle Scholar
  3. 3.
    Schaefer I, Rustenbach SJ, Zimmer L, Augustin M. Prevalence of skin diseases in a cohort of 48,665 employees in Germany. Dermatology. 2008;217(2):169–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Augustin M, Herberger K, Hintzen S, Heigel H, Franzke N, Schafer I. Prevalence of skin lesions and need for treatment in a cohort of 90 880 workers. Br J Dermatol. 2011;165(4):865–73.CrossRefPubMedGoogle Scholar
  5. 5.
    McAleer MA, Fitzpatrick P, Powell FC. Papulopustular rosacea: prevalence and relationship to photodamage. J Am Acad Dermatol. 2010;63(1):33–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Berg M, Liden S. An epidemiological study of rosacea. Acta Derm Venereol. 1989;69(5):419–23.PubMedGoogle Scholar
  7. 7.
    Bamford JT, Gessert CE, Renier CM, Jackson MM, Laabs SB, Dahl MV, et al. Childhood stye and adult rosacea. J Am Acad Dermatol. 2006;55(6):951–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Romanowicz M, Stephenson JJ, Del Rosso JQ, Lenhart G. Healthcare utilization and costs of patients with rosacea in an insured population. J Drugs Dermatol. 2008;7(1):41–9.PubMedGoogle Scholar
  9. 9.
    Doe PT, Asiedu A, Acheampong JW, Rowland Payne CM. Skin diseases in Ghana and the UK. Int J Dermatol. 2001;40(5):323–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Kyriakis KP, Palamaras I, Terzoudi S, Emmanuelides S, Michailides C, Pagana G. Epidemiologic aspects of rosacea. J Am Acad Dermatol. 2005;53(5):918–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Khaled A, Hammami H, Zeglaoui F, Tounsi J, Zermani R, Kamoun MR, et al. Rosacea: 244 Tunisian cases. Tunis Med. 2010;88(8):597–601.PubMedGoogle Scholar
  12. 12.
    Gutierrez EL, Galarza C, Ramos W, Mendoza M, Smith ME, Ortega-Loayza AG. Influence of climatic factors on the medical attentions of dermatologic diseases in a hospital of Lima. Peru An Bras Dermatol. 2010;85(4):461–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Abram K, Silm H, Oona M. Prevalence of rosacea in an Estonian working population using a standard classification. Acta Derm Venereol. 2010;90(3):269–73.CrossRefPubMedGoogle Scholar
  14. 14.
    Lazaridou E, Fotiadou C, Ziakas NG, Giannopoulou C, Apalla Z, Ioannides D. Clinical and laboratory study of ocular rosacea in northern Greece. J Eur Acad Dermatol Venereol. 2011;25(12):1428–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Spoendlin J, Voegel JJ, Jick SS, Meier CR. A study on the epidemiology of rosacea in the U.K. Br J Dermatol. 2012;167(3):598–605.CrossRefPubMedGoogle Scholar
  16. 16.
    Culp B, Scheinfeld N. Rosacea: a review. P T. 2009;34(1):38–45.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Powell FC. Clinical practice. Rosacea. N Engl J Med. 2005;352(8):793–803.CrossRefPubMedGoogle Scholar
  18. 18.
    Kroshinsky D, Glick SA. Pediatric rosacea. Dermatol Ther. 2006;19(4):196–201.CrossRefPubMedGoogle Scholar
  19. 19.
    Lacz NL, Schwartz RA. Rosacea in the pediatric population. Cutis. 2004;74(2):99–103.PubMedGoogle Scholar
  20. 20.
    Bertolini W, Duquia RP, de Oliveira OL, de Campos GF, Bonamigo RR. Could a simple microbiological culture and an antibiogram guide the treatment of our patients with papulopustular rosacea (PPR)? J Am Acad Dermatol. 2015;73(3):e113–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Bonamigo RR, Leite CS, Wagner M, Bakos L. Rosacea and Helicobacter pylori: interference of systemic antibiotic in the study of possible association. J Eur Acad Dermatol Venereol. 2000;14(5):424–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Whitfeld M, Gunasingam N, Leow LJ, Shirato K, Preda V. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64(1):49–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Gravina A, Federico A, Ruocco E, Lo Schiavo A, Masarone M, Tuccillo C, et al. Helicobacter pylori infection but not small intestinal bacterial overgrowth may play a pathogenic role in rosacea. United Eur Gastroenterol J. 2015;3(1):17–24.CrossRefGoogle Scholar
  24. 24.
    Aldrich N, Gerstenblith M, Fu P, Tuttle MS, Varma P, Gotow E, et al. Genetic vs environmental factors that correlate with rosacea: a cohort-based survey of twins. JAMA Dermatol. 2015;151(11):1213–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Tan SG, Cunliffe WJ. Rosacea and migraine. Br Med J. 1976;1(6000):21.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gupta MA, Gupta AK, Chen SJ, Johnson AM. Comorbidity of rosacea and depression: an analysis of the National Ambulatory Medical Care Survey and National Hospital Ambulatory Care Survey – Outpatient Department data collected by the U.S. National Center for Health Statistics from 1995 to 2002. Br J Dermatol. 2005;153(6):1176–81.Google Scholar
  27. 27.
    Curnier A, Choudhary S. Rhinophyma: dispelling the myths. Plast Reconstr Surg. 2004;114(2):351–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Sobye P. Aetiology and pathogenesis of rosacea. Acta Derm Venereol. 1950;30(2):137–58.PubMedGoogle Scholar
  29. 29.
    Plewig G, Kligman AM, editors. Acne and rosacea. 3rd ed. Berlin: Springer; 2000. 744 pGoogle Scholar
  30. 30.
    Wilkin J, Dahl M, Detmar M, Drake L, Liang MH, Odom R, et al. Standard grading system for rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2004;50(6):907–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Steinhoff M, Buddenkotte J, Aubert J, Sulk M, Novak P, Schwab VD, et al. Clinical, cellular, and molecular aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):2–11.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wilkin J, Dahl M, Detmar M, Drake L, Feinstein A, Odom R, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the Classification and Staging of Rosacea. J Am Acad Dermatol. 2002;46(4):584–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Steinhoff M, Bergstresser PR. Pathophysiology of rosacea: introduction. J Investig Dermatol Symp Proc. 2011;15(1):1.CrossRefPubMedGoogle Scholar
  34. 34.
    Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72(5):749–58. quiz 59–60Google Scholar
  35. 35.
    Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Schauber J, Gallo RL. Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J Invest Dermatol. 2007;127(3):510–2.CrossRefPubMedGoogle Scholar
  37. 37.
    Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;111(11):1665–72.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131(3):688–97.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao YE, Wu LP, Peng Y, Cheng H. Retrospective analysis of the association between Demodex infestation and rosacea. Arch Dermatol. 2010;146(8):896–902.PubMedGoogle Scholar
  40. 40.
    Jarmuda S, O’Reilly N, Zaba R, Jakubowicz O, Szkaradkiewicz A, Kavanagh K. Potential role of Demodex mites and bacteria in the induction of rosacea. J Med Microbiol. 2012;61(Pt 11):1504–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157(3):474–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Jang YH, Sim JH, Kang HY, Kim YC, Lee ES. Immunohistochemical expression of matrix metalloproteinases in the granulomatous rosacea compared with the non-granulomatous rosacea. J Eur Acad Dermatol Venereol. 2011;25(5):544–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Bonamigo RR, Bakos L, Edelweiss M, Cartell A. Could matrix metalloproteinase-9 be a link between Demodex folliculorum and rosacea? J Eur Acad Dermatol Venereol. 2005;19(5):646–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Invest Dermatol. 2014;134(11):2728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schwab VD, Sulk M, Seeliger S, Nowak P, Aubert J, Mess C, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):53–62.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schauber J, Gallo RL. The vitamin D pathway: a new target for control of the skin’s immune response? Exp Dermatol. 2008;17(8):633–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ekiz O, Balta I, Sen BB, Dikilitas MC, Ozuguz P, Rifaioglu EN. Vitamin D status in patients with rosacea. Cutan Ocul Toxicol. 2014;33(1):60–2.CrossRefPubMedGoogle Scholar
  48. 48.
    Crawford GH, Pelle MT, James WD. Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol. 2004;51(3):327–41. quiz 42–4Google Scholar
  49. 49.
    Bonnar E, Eustace P, Powell FC. The Demodex mite population in rosacea. J Am Acad Dermatol. 1993;28(3):443–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Lazaridou E, Apalla Z, Sotiraki S, Ziakas NG, Fotiadou C, Ioannides D. Clinical and laboratory study of rosacea in northern Greece. J Eur Acad Dermatol Venereol. 2010;24(4):410–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Buechner SA. Rosacea: an update. Dermatology. 2005;210(2):100–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Bevins CL, Liu FT. Rosacea: skin innate immunity gone awry? Nat Med. 2007;13(8):904–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Ferrer L, Ravera I, Silbermayr K. Immunology and pathogenesis of canine demodicosis. Vet Dermatol. 2014;25(5):427–e65.CrossRefPubMedGoogle Scholar
  54. 54.
    Hsu CK, Hsu MM, Lee JY. Demodicosis: a clinicopathological study. J Am Acad Dermatol. 2009;60(3):453–62.CrossRefPubMedGoogle Scholar
  55. 55.
    O’Reilly N, Bergin D, Reeves EP, McElvaney NG, Kavanagh K. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol. 2012;166(4):753–60.CrossRefPubMedGoogle Scholar
  56. 56.
    Murillo N, Aubert J, Raoult D. Microbiota of Demodex mites from rosacea patients and controls. Microb Pathog. 2014;71–72:37–40.CrossRefPubMedGoogle Scholar
  57. 57.
    Lazaridou E, Giannopoulou C, Fotiadou C, Vakirlis E, Trigoni A, Ioannides D. The potential role of microorganisms in the development of rosacea. J Dtsch Dermatol Ges. 2011;9(1):21–5.PubMedGoogle Scholar
  58. 58.
    Cribier B. Rosacea under the microscope: characteristic histological findings. J Eur Acad Dermatol Venereol. 2013;27(11):1336–43.CrossRefPubMedGoogle Scholar
  59. 59.
    Zouboulis CC, Katsambas AD, Kligman AM. Pathogenesis and treatment of acne and rosacea. Heidelberg: Springer; 2014. 768 pCrossRefGoogle Scholar
  60. 60.
    Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Bradley JS. Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis. 2004;23(6):445–55.CrossRefPubMedGoogle Scholar
  61. 61.
    Gerber PA, Buhren BA, Steinhoff M, Homey B. Rosacea: the cytokine and chemokine network. J Investig Dermatol Symp Proc. 2011;15(1):40–7.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yamasaki K, Gallo RL. The molecular pathology of rosacea. J Dermatol Sci. 2009;55(2):77–81.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yamasaki K, Gallo RL. Rosacea as a disease of cathelicidins and skin innate immunity. J Investig Dermatol Symp Proc. 2011;15(1):12–5.Google Scholar
  64. 64.
    Morizane S, Yamasaki K, Kabigting FD, Gallo RL. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol. 2010;130(5):1297–306.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Aubdool AA, Brain SD. Neurovascular aspects of skin neurogenic inflammation. J Investig Dermatol Symp Proc. 2011;15(1):33–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165–217.CrossRefPubMedGoogle Scholar
  67. 67.
    Guzman-Sanchez DA, Ishiuji Y, Patel T, Fountain J, Chan YH, Yosipovitch G. Enhanced skin blood flow and sensitivity to noxious heat stimuli in papulopustular rosacea. J Am Acad Dermatol. 2007;57(5):800–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Steinhoff M, Schauber J, Leyden JJ. New insights into rosacea pathophysiology: a review of recent findings. J Am Acad Dermatol. 2013;69(6 Suppl 1):S15–26.CrossRefPubMedGoogle Scholar
  69. 69.
    Ni Raghallaigh S, Bender K, Lacey N, Brennan L, Powell FC. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br J Dermatol. 2012;166(2):279–87.CrossRefPubMedGoogle Scholar
  70. 70.
    Gomaa AH, Yaar M, Eyada MM, Bhawan J. Lymphangiogenesis and angiogenesis in non-phymatous rosacea. J Cutan Pathol. 2007;34(10):748–53.CrossRefPubMedGoogle Scholar
  71. 71.
    Huggenberger R, Detmar M. The cutaneous vascular system in chronic skin inflammation. J Investig Dermatol Symp Proc. 2011;15(1):24–32.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fowler J, Jarratt M, Moore A, Meadows K, Pollack A, Steinhoff M, et al. Once-daily topical brimonidine tartrate gel 0.5% is a novel treatment for moderate to severe facial erythema of rosacea: results of two multicentre, randomized and vehicle-controlled studies. Br J Dermatol. 2012;166(3):633–41.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Seeliger S, Buddenkotte J, Schmidt-Choudhury A, Rosignoli C, Shpacovitch V, von Arnim U, et al. Pituitary adenylate cyclase activating polypeptide: an important vascular regulator in human skin in vivo. Am J Pathol. 2010;177(5):2563–75.Google Scholar
  74. 74.
    Powell FC. The histopathology of rosacea: ‘where’s the beef?’. Dermatology. 2004;209(3):173–4.CrossRefPubMedGoogle Scholar
  75. 75.
    Burns T, Breathnach S, Cox N. Griffiths C. Rook’s textbook of dermatology. 2010 ed. UK: Wiley-Blackwell; 2010, p. 43.1–.7.Google Scholar
  76. 76.
    Tan J, Blume-Peytavi U, Ortonne JP, Wilhelm K, Marticou L, Baltas E, et al. An observational cross-sectional survey of rosacea: clinical associations and progression between subtypes. Br J Dermatol. 2013;169(3):555–62.CrossRefPubMedGoogle Scholar
  77. 77.
    Bonamigo RR, Bakos L, Cartell A, Edelweiss MI. Fatores associados à rosácea em amostras populacionais do Sul do Brasil: análise de estudos casos-controles. An Bras Dermatol. 2008;83:419–24.CrossRefGoogle Scholar
  78. 78.
    Cribier B. Pathophysiology of rosacea: redness, telangiectasia, and rosacea. Ann Dermatol Venereol. 2011;138(Suppl 3):S184–91.CrossRefPubMedGoogle Scholar
  79. 79.
    Aloi F, Tomasini C, Soro E, Pippione M. The clinicopathologic spectrum of rhinophyma. J Am Acad Dermatol. 2000;42(3):468–72.CrossRefPubMedGoogle Scholar
  80. 80.
    Aksoy B, Altaykan-Hapa A, Egemen D, Karagoz F, Atakan N. The impact of rosacea on quality of life: effects of demographic and clinical characteristics and various treatment modalities. Br J Dermatol. 2010;163(4):719–25.CrossRefPubMedGoogle Scholar
  81. 81.
    Pelle MT, Crawford GH, James WD. Rosacea: II. Therapy. J Am Acad Dermatol. 2004;51(4):499–512. quiz 3–4Google Scholar
  82. 82.
    Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part II. Topical and systemic therapies in the treatment of rosacea. J Am Acad Dermatol. 2015;72(5):761–70. quiz 71–2Google Scholar
  83. 83.
    Elewski BE, Draelos Z, Dreno B, Jansen T, Layton A, Picardo M. Rosacea – global diversity and optimized outcome: proposed international consensus from the Rosacea International Expert Group. J Eur Acad Dermatol Venereol. 2011;25(2):188–200.Google Scholar
  84. 84.
    Del Rosso JQ, Thiboutot D, Gallo R, Webster G, Tanghetti E, Eichenfield L, et al. Consensus recommendations from the American Acne & Rosacea Society on the management of rosacea, part 1: a status report on the disease state, general measures, and adjunctive skin care. Cutis. 2013;92(5):234–40.PubMedGoogle Scholar
  85. 85.
    van Zuuren EJ, Fedorowicz Z, Carter B, van der Linden MM, Charland L. Interventions for rosacea. Cochrane Database Syst Rev. 2015;4:CD003262.Google Scholar
  86. 86.
    Stinco G, Bragadin G, Trotter D, Pillon B, Patrone P. Relationship between sebostatic activity, tolerability and efficacy of three topical drugs to treat mild to moderate acne. J Eur Acad Dermatol Venereol. 2007;21(3):320–5.CrossRefPubMedGoogle Scholar
  87. 87.
    Coda AB, Hata T, Miller J, Audish D, Kotol P, Two A, et al. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol. 2013;69(4):570–7.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wise RD. Submicrobial doxycycline and rosacea. Compr Ther. 2007;33(2):78–81.CrossRefPubMedGoogle Scholar
  89. 89.
    Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL.Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea.Nat Med. 2007 Aug;13(8):975–80.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  1. 1.Dermatology Service, Hospital de Clínicas de Porto Alegre (HCPA), Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Sanitary Dermatology Service of the Department of Health of Rio Grande do Sul State (ADS-SES)Porto AlegreBrazil
  3. 3.Graduate Pathology Program of Federal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  4. 4.Santa Casa HospitalPorto AlegreBrazil
  5. 5.Sanitary Dermatology Service of Health Department of Rio Grande do Sul State (ADS-SES)Porto AlegreBrazil

Personalised recommendations