Advertisement

Multi-resolution Traffic Simulation for Large-Scale High-Fidelity Evaluation of VANET Applications

  • Manuel Schiller
  • Marius Dupius
  • Daniel Krajzewicz
  • Andreas Kern
  • Alois Knoll
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

This paper presents an approach for coupling traffic simulators of different resolutions in order to conduct virtual evaluations of advanced driver assistance systems based on vehicular ad hoc networks that are both large scale and a high fidelity. The emphasis is put on the need for such an attempt to satisfy the constraint of performing simulations in real time. Both the methods to accomplish this as well as the resulting performance are described.

Keywords

V2V communication ADAS Multi-resolution simulation 

References

  1. 1.
    Gietelink O, Ploeg J, De Schutter B, Verhaegen M (2006) Development of advanced driver assistance systems with vehicle hardware-in-the-loop simulations. Veh Syst Dyn 44(7):569–590CrossRefGoogle Scholar
  2. 2.
    Hou Y, Zhao Y, Hulme KF, Huang S, Yang Y, Sadek AW, Qiao C (2014) An integrated traffic-driving simulation framework: design, implementation, and validation. Transp Res Part C: Emerging Technol 45:138–153. issn 0968-090XCrossRefGoogle Scholar
  3. 3.
    Olstam J (2009) Simulation of surrounding vehicles in driving simulators, PhD thesis, Linköpings universitet, Kommunikations- och transportsystem. In: Linköping Studies in Science and Technology. Dissertations, no. 1248Google Scholar
  4. 4.
    Naus G, Vugts R, Ploeg J, van de Molengraft M, Steinbuch M (2010) String-stable cacc design and experimental validation: A frequency-domain approach. IEEE Trans Veh Technol 59(9):4268–4279CrossRefGoogle Scholar
  5. 5.
    Hoogendoorn SP, Bovy PH (2001) State-of-the-art of vehicular traffic flow modelling. Proc Inst Mech Eng Part I J Syst Control Eng 215(4):283–303CrossRefGoogle Scholar
  6. 6.
    Ni D (2006) A framework for new generation transportation simulation. In: Proceedings of the 38th conference on winter simulation, ser. WSC ’06. plus 0.5em minus 0.4em winter simulation conference, pp 1508–1514Google Scholar
  7. 7.
    Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans Mob Comput 10(1):3–15CrossRefGoogle Scholar
  8. 8.
    Ros FJ, Martinez JA, Ruiz PM (2014) A survey on modeling and simulation of vehicular networks: communications, mobility, and tools. Comput Commun 43:1–15CrossRefGoogle Scholar
  9. 9.
    Booysen MJ, Zeadally S, Van Rooyen G-J (2013) Impact of neighbor awareness at the MAC layer in a vehicular ad-hoc network (vanet). In: 2013 IEEE 5th international symposium on wireless vehicular communications (WiVeC), plus 0.5em minus 0.4em. IEEE, New York, pp 1–5Google Scholar
  10. 10.
    Sommer C, Krul R, German R, Dressler F (2010) Emissions versus travel time: simulative evaluation of the environmental impact of its. In: 71st IEEE vehicular technology conference (VTC2010-Spring). plus 0.5em minus 0.4em. Taipei, Taiwan: IEEE, pp 1–5Google Scholar
  11. 11.
    Davis PK, Hillestad R (1993) Families of models that cross levels of resolution: Issues for design, calibration and management. In: Proceedings of the 25th conference on winter simulation. plus 0.5em minus 0.4em. ACM, pp 1003–1012Google Scholar
  12. 12.
    Flötteröd G, Nagel K (2007) High speed combined micro/macro simulation of traffic flow. In: IEEE intelligent transportation systems conference, ITSC, pp 1114–1119Google Scholar
  13. 13.
    Rieck D, Schünemann B, Radusch I, Meinel C (2010) Efficient traffic simulator coupling in a distributed v2x simulation environment. In: Proceedings of the 3rd international ICST conference on simulation tools and techniques, ser. SIMUTools ’10. plus 0.5em minus 0.4em. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 72:1–72:9Google Scholar
  14. 14.
    Potuzak T (2013) Issues of parallel hybrid nanoscopic/microscopic road traffic simulation. In: EUROCON. IEEE, New York, pp 614–621Google Scholar
  15. 15.
    Navarro L, Flacher F, Corruble V (2011) Dynamic level of detail for large scale agent-based urban simulations. In: The 10th international conference on autonomous agents and multiagent systems - Volume 2, ser. AAMAS ’11. plus 0.5em minus 0.4em. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems, pp 701–708Google Scholar
  16. 16.
    Olstam J, Elyasi-Pour R (2013) Combining traffic and vehicle simulation for enhanced evaluations of powertrain related adas for trucks,. In: 2013 16th international IEEE conference on intelligent transportation systems - (ITSC), pp 851–856Google Scholar
  17. 17.
    Pereira JLF, Rossetti RJF (2012) An integrated architecture for autonomous vehicles simulation. In: SAC, Ossowski S, Lecca P (eds) plus 0.5em minus 0.4em. ACM, pp 286–292Google Scholar
  18. 18.
    Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO - Simulation of Urban MObility. Int J Adv Syst Meas 5(3&4):128–138Google Scholar
  19. 19.
    Krajzewicz D (2013) Summary on publications citing SUMO, 2002–2012. In: 1st SUMO user conference - SUMO 2013. DLR. SUMO2013 - 1st SUMO user conference, 2013, Berlin, Germany. ISSN 1866-721XGoogle Scholar
  20. 20.
    Krauss S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow. Phys Rev E 55:5597–5602CrossRefGoogle Scholar
  21. 21.
    von Neumann-Cosel K, Dupuis M, Weiss C (2009) Virtual test drive - provision of a consistent tool-set for [d,h,s,v]-in-the-loop. In: Proceedings of the driving simulation conference MonacoGoogle Scholar
  22. 22.
    Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805CrossRefGoogle Scholar
  23. 23.
    Wegener A, Piórkowski M, Raya M, Hellbrück H, Fischer S, Hubaux J-P (2008) Traci: an interface for coupling road traffic and network simulators. In: Proceedings of the 11th communications and networking simulation symposium, ser. CNS ’08. plus 0.5em minus 0.4em. ACM, New York, pp 155–163Google Scholar
  24. 24.
    Reynolds PF Jr, Natrajan A, Srinivasan S (1997) Consistency maintenance in multiresolution simulation. ACM Trans. Model. Comput. Simul. 7(3):368–392CrossRefGoogle Scholar
  25. 25.
    Krauß S (1998) Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics, PhD thesisGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Manuel Schiller
    • 1
  • Marius Dupius
    • 2
  • Daniel Krajzewicz
    • 3
  • Andreas Kern
    • 4
  • Alois Knoll
    • 1
  1. 1.Lehrstuhl Für Echtzeitsysteme Und Robotik, Technische Universität MünchenGarchingGermany
  2. 2.VIRES Simulationstechnologie GmbHBad AiblingGermany
  3. 3.Institute of Transportation SystemsGerman Aerospace CenterBraunschweigGermany
  4. 4.AUDI AGIngolstadtGermany

Personalised recommendations