Advertisement

Dental Tool Technology

  • H. Sein
  • C. Maryan
  • A. Jones
  • J. Verran
  • N. Ali
  • I. U. Hassan
  • C. Rego
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

Dental technology is a discipline of dentistry concerned with the custom manufacture of dental devices to meet the prescription of a dentist. From the earliest times missing teeth have been replaced with dentures or crowns made from a wide variety of materials including gold, human or animal teeth, bone and tusks and wood. Natural teeth were used for dentures, collected from battlefields, hospitals or by grave diggers, these were mounted in carved dentures of walrus or hippopotamus ivory or on gold. By the late eightieth century dentures fused porcelain teeth were introduced, dentures could be carved from blocks of ivory or carved fixed to a gold plate by gold pins. In the mid-ninetieth century the first artificial denture base materials were introduced, vulcanite (or hard rubber) and celluloid, superseded in the 1940s with the introduction of polymethyl methacrylate. During the twentieth century base a wide range of new materials and techniques have been introduced to dentistry, including precision lost wax casting for dental alloys, a wide range of precious metal and base metal alloys and dental ceramics. This chapter focuses on advances in dental tool technology.

Keywords

Surgical tools Diamond Surgery Dental tools 

References

  1. 1.
    Ash, Claudius & Sons. (1921). A centenary memoir 1820–1921. London: Clowns.Google Scholar
  2. 2.
    Craig, R. G., & Powers, J. M. (2002). Restorative dental materials (11th ed.). Maryland Heights: Mosby.Google Scholar
  3. 3.
    Nuffield Report.Google Scholar
  4. 4.
    Christensen, G. J. (2005). Dental laboratory technology in crisis: The challenges facing the industry. Journal of the American Dental Association, 136(5), 653–655.Google Scholar
  5. 5.
    Glenner, R. A. (1974). Development of the dental drill. The Journal of the American Dental Association, 88, 712–727.Google Scholar
  6. 6.
    Vinksi, I. (1979). Two hundred and fifty years of rotary instruments in dentistry. British Dental Journal, 146(7), 217–223.Google Scholar
  7. 7.
    Ring, M. E., & Hurley, N. (2000). James Beall Morrison: The visionary who revolutionized the practice of dentistry. The Journal of the American Dental Association, 131(8), 1161–1167.Google Scholar
  8. 8.
    Siegel, S. C., & von Fraunhofer, J. A. (1998). Dental cutting: The historical development of diamond burs The Journal of the American Dental Association, 129(6), 740–745.Google Scholar
  9. 9.
    Crawford, P. R. (1990). The birth of the bur (and how a Canadian changed it all!). Journal Canadian Dental Association, 56(2), 123–126.Google Scholar
  10. 10.
    Oral communication, G Needham. Huddersfield, England: Metrodent Ltd.Google Scholar
  11. 11.
    Oral communication, P Gough, Senior Lecturer Dental Technology. Manchester: Manchester Metropolitan University.Google Scholar
  12. 12.
    Oral communication, J Lewis, Senior Lecturer Dental Technology. Cardiff: University of Wales Institute.Google Scholar
  13. 13.
    Siegel, S. C., & von Fraunhofer, J. A. (1999). Dental burs—What bur for which application? A survey of dental schools. Journal of Prosthodontics, 8(4), 258–263.Google Scholar
  14. 14.
    O’Brien, W. J. (2003). Dental materials and their selection. Chicago: Quintessence.Google Scholar
  15. 15.
    Neppelenbroek, K. H., Pavarina, A. C., Vergani, C. E., & Giampaolo, E. T. (2005). Hardness of heat-polymerized acrylic resins after disinfection and long-term water immersion. Journal of Prosthetic Dentistry, 93(2), 171–176.Google Scholar
  16. 16.
    Ilbay, S. G., Guvener, S., & Alkumru, H. N. (1994). Processing dentures using a microwave technique. Journal of Oral Rehabilitation, 21(1), 103–109.Google Scholar
  17. 17.
    Dental Laboratory catalogue. Huddersfield: Metrodent Ltd.Google Scholar
  18. 18.
    Verran, J., & Maryan, C. J. (1997). Retention of Candida albicans on acrylic resin and silicone of different surface topography. Journal of Prosthetic Dentistry, 77(5), 535–539.Google Scholar
  19. 19.
    Taylor, R., Maryan, C., & Verran, J. (1998). Retention of oral microorganisms on cobalt-chromium alloy and dental acrylic resin with different surface finishes. Journal of Prosthetic Dentistry, 80(5), 592–597.Google Scholar
  20. 20.
    Bulad, K., Taylor, R. L., Verran, J., & McCord, J. F. (2004). Colonization and penetration of denture soft lining materials by Candida albicans. Dental Materials, 20(2), 167–175.Google Scholar
  21. 21.
    Radford, D. R., Sweet, S. P., Challacombe, S. J., & Walter, J. D. (1998). Adherence of Candida albicans to denture-base materials with different surface finishes. Journal of Dentistry, 26(7), 577–583.Google Scholar
  22. 22.
    Morgan, T. D., & Wilson, M. (2001). The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor. Journal of Applied Microbiology, 91(1), 47–53.Google Scholar
  23. 23.
    Bollen, C. M., Lambrechts, P., & Quirynen, M. (1997). Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dental Materials, 13(4), 258–269.Google Scholar
  24. 24.
    Zissis, A. J., Polyzois, G. L., Yannikakis, S. A., & Harrison, A. (2000). Roughness of denture materials: A comparative study. International Journal of Prosthodontics, 13(2), 136–140.Google Scholar
  25. 25.
    Ulusoy, M., Ulusoy, N., & Aydin, A. K. (1986). An evaluation of polishing techniques on surface roughness of acrylic resins. Journal of Prosthetic Dentistry, 56(1), 107–112.Google Scholar
  26. 26.
    Radford, D. R., Watson, T. F., Walter, J. D., & Challacombe, S. J. (1997). The effects of surface machining on heat cured acrylic resin and two soft denture base materials: A scanning electron microscope and confocal microscope evaluation. The Journal of Prosthetic Dentistry, 78(2), 200–208.Google Scholar
  27. 27.
    Sofou, A., Emmanouil, J., Peutzfeldt, A., & Owall, B. (2001). The effect of different polishing techniques on the surface roughness of acrylic resin materials. The European Journal of Prosthodontics and Restorative Dentistry, 9(3–4), 117–122.Google Scholar
  28. 28.
    Rahal, J. S., Mesquita, M. F., & Henriques, G. E. (2004). Nobilo MA surface roughness of acrylic resins submitted to mechanical and chemical polishing. Journal of Oral Rehabilitation, 31(11), 1075–1079.Google Scholar
  29. 29.
    Kuhar, M., & Funduk, N. (2005). Effects of polishing techniques on the surface roughness of acrylic denture base resins. The Journal of Prosthetic Dentistry, 93(1), 76–85.Google Scholar
  30. 30.
    Aydin, A. K. (1991). Evaluation of finishing and polishing techniques on surface roughness of chromium-cobalt castings. Journal of Prosthetic Dentistry, 65(6), 763–767.Google Scholar
  31. 31.
    Xenodimitropoulou, G., & Radford, D. R. (1998). The machining of cobalt-chromium alloy in partial denture construction. International Journal of Prosthodontics, 11(6), 565–573.Google Scholar
  32. 32.
    Ponnanna, A. A., Joshi, S. M., Bhat, S., & Shetty, P. (2001). Evaluation of the polished surface characteristic of cobalt-chrome castings subsequent to various finishing and polishing techniques. Indian Society for Dental Research, 12(4), 222–228.Google Scholar
  33. 33.
    Pererra, V., & Maryan, C. (2002). Evaluation of the dust generated finishing and polishing cobalt-chrome castings. BSc(Honours) dissertation, Manchester Metropolitan University, Manchester.Google Scholar
  34. 34.
    Kononen, M., Rintanen, J., Waltimo, A., & Kempainen, P. (1995). Titanium framework removable partial denture used for patient allergic to other metals: A clinical report and literature review. Journal of Prosthetic Dentistry, 73(1), 4–7.Google Scholar
  35. 35.
    Au, A. R., Lechner, S. K., Thomas, C. J., Mori, T., & Chung, P. (2000). Titanium for removable partial dentures (III): 2-year clinical follow-up in an undergraduate programme. Journal of Oral Rehabilitation, 27(11), 979–985.Google Scholar
  36. 36.
    Rodrigues, R. C., Ribeiro, R. F., de Mattos, M. G., & Bezzon, O. L. (2002). Comparative study of circumferential clasp retention force for titanium and cobalt-chromium removable partial dentures. The Journal of Prosthetic Dentistry, 88(3), 290–296.Google Scholar
  37. 37.
    Srimaneepong, V., Yoneyama, T., Wakabayashi, N., Kobayashi, E., Hanawa, T. &, Doi, H. (2004). Deformation properties of Ti-6A1-7Nb alloy castings for removable partial denture frameworks. Dental Materials Journal, 23(4), 497–503.Google Scholar
  38. 38.
    Ohkubo, C., Watanabe, I., Ford, J. P., Nakajima, H., Hosoi, T., & Okabe, T. (2000). The machinability of cast titanium and Ti–6Al–4V. Biomaterials, 21(4), 421–428.Google Scholar
  39. 39.
    Kikuchi, M., Takada, Y., Kiyosue, S., Yoda, M., Woldu, M., Cai, Z., et al. (2003). Grindability of cast Ti–Cu alloys. Dental Materials, 19(5), 375–381.Google Scholar
  40. 40.
    Hirata, T., Nakamura, T., Takashima, F., Maruyama, T., Taira, M., & Takahashi, J. (2001). Studies on polishing of Ti and Ag–Pd–Cu–Au alloy with five dental abrasives. Journal of Oral Rehabilitation, 28(8), 773–777.Google Scholar
  41. 41.
    Hotta, Y., Miyazaki, T., Fujiwara, T., Tomita, S., Shinya, A., Sugai, Y., et al. (2004). Durability of tungsten carbide burs for the fabrication of titanium crowns using dental CAD/CAM. Dental Materials Journal, 23(2), 190–196.Google Scholar
  42. 42.
    Siegel, S. C., & Fraunhofer, J. A. (1999). Comparison of sectioning rates among carbide and diamond burs using three casting alloys. Journal of Prosthodontics, 8(4), 240–244.Google Scholar
  43. 43.
    Miyawaki, H., Taira, M., Wakasa, K., & Yamaki, M. (1993). Dental high-speed cutting of four cast alloys. Journal of Oral Rehabilitation, 20(6), 653–661.Google Scholar
  44. 44.
    Clayton, J., & Green, E. (1970). Roughness of pontic materials and dental plaque. Journal of Prosthetic Dentistry, 23, 407–411.Google Scholar
  45. 45.
    Monasky, G. E., & Taylor, D. F. (1971). Studies on the wear of porcelain, enamel and gold. Journal of Prosthetic Dentistry, 25, 299–306.Google Scholar
  46. 46.
    Hacker, C. H., Wagner, W. C., & Razzoog, M. E. (1996). An in-vitro investigation of the wear of enamel on porcelain and gold in saliva. Journal of Prosthetic Dentistry, 75, 14–17.Google Scholar
  47. 47.
    Newitter, D. A., Schlissel, E., & Wolff, M. S. (1982). An evaluation of adjustment and postadjustment finishing techniques on the surface of porcelain-bonded-to-metal crowns. Journal of Prosthetic Dentistry, 43, 388–395.Google Scholar
  48. 48.
    Schlissel, E. R., Newitter, D. A., Renner, R. R., & Gwinnett, A. J. (1980). An evaluation of postadjustment polishing techniques for porcelain denture teeth. Journal of Prosthetic Dentistry, 43, 258–265.Google Scholar
  49. 49.
    Smith, G. A., & Wilson, N. H. F. (1981). The surface finish of trimmed porcelain. British Dental Journal, 151, 222–224.Google Scholar
  50. 50.
    Sulik, W. D., & Plekavich, E. J. (1981). Surface finishing of dental porcelain. Journal of Prosthetic Dentistry, 46, 217–221.Google Scholar
  51. 51.
    Zalkind, M., Lauer, S., & Stern, N. (1986). Porcelain surface texture after reduction and natural glazing. Journal of Prosthetic Dentistry, 55, 30–33.Google Scholar
  52. 52.
    Wiley, M. G. (1989). Effects of porcelain on occluding surface of restored teeth. Journal of Prosthetic Dentistry, 61, 133–137.Google Scholar
  53. 53.
    Raimondo, R. L., Richardson, J. T., & Wiedner, B. (1990). Polished versus autoglazed dental porcelain. Journal of Prosthetic Dentistry, 64, 553–557.Google Scholar
  54. 54.
    Patterson, C. J. W., McLundie, A. C., Stirrups, D. R., & Taylor, W. G. (1991). Polishing of porcelain by using a refinishing kit. Journal of Prosthetic Dentistry, 65, 383–388.Google Scholar
  55. 55.
    Scurria, M. S., & Powers, J. M. (1994). Surface roughness of two polished ceramic materials. Journal of Prosthetic Dentistry, 71, 174–177.Google Scholar
  56. 56.
    Jagger, D. C., & Harrison, A. (1994). An in vitro investigation into the wear effects of unglazed, glazed, and polished porcelain on human enamel. Journal of Prosthetic Dentistry, 72(3), 320–323.Google Scholar
  57. 57.
    Jagger, D. C., & Harrison, A. (1995). An in vitro investigation into the wear effects of selected restorative materials on enamel. Journal of Oral Rehabilitation, 22(4), 275–281.Google Scholar
  58. 58.
    Ramp, M. H., Suzuki, S., Cox, C. F., Lacefield, W. R., & Koth, D. L. (1997). Evaluation of wear: Enamel opposing three ceramic materials and a gold alloy. Journal of Prosthetic Dentistry, 77(5), 523–530.Google Scholar
  59. 59.
    Al-Wahadni, A., & Muir Martin, D. (1998). Glazing and finishing dental porcelain: A literature review. Journal-Canadian Dental Association, 64(8), 580–583.Google Scholar
  60. 60.
    Magne, P., Oh, W. S., Pintado, M. R., & DeLong, R. (1999). Wear of enamel and veneering ceramics after laboratory and chairside finishing procedures. Journal of Prosthetic Dentistry, 82(6), 669–679.Google Scholar
  61. 61.
    Clelland, N. L., Agarwala, V., Knobloch, L. A., & Seghi, R. R. (2003). Relative wear of enamel opposing low-fusing dental porcelain. Journal of Prosthodontics, 12(3), 168–175.Google Scholar
  62. 62.
    Sirona Dental Systems, CEREC®.Google Scholar
  63. 63.
    Leinfelder, K. F., Isenberg, B. P., & Essig, M. E. (1989). A new method for generating ceramic restorations: A CAD-CAM system. Journal of the American Dental Association, 118(6), 703–707.Google Scholar
  64. 64.
    Mikrona. Celay®, http://www.mikrona.com/mikrona_e.html, March 2015.
  65. 65.
    Girrbach Dental GmbH. digiDENT®, www.girrbach.com, March 2015.
  66. 66.
  67. 67.
    DCS-Dental AG, Precident®, http://www.dcs-dental.com/eng/cadcam.htm, March 2015.
  68. 68.
  69. 69.
    Concurrent Analysis Corporation., Cicero Dental Systems http://www.caefem.com/dental_crown.htm, March 2015.
  70. 70.
    van der Zel, J. M., Vlaar, S., de Ruiter, W. J., & Davidson, C. (2001). The CICERO system for CAD/CAM fabrication of full-ceramic crowns. Journal of Prosthetic Dentistry, 85(3), 261–267.Google Scholar
  71. 71.
    Molin, M., & Karlsson, S. (1993). The fit of gold inlays and three ceramic inlay systems. A clinical and in vitro study. Acta Odontologica Scandinavica, 51(4), 201–206.Google Scholar
  72. 72.
    Siervo, S., Bandettini, B., Siervo, P., Falleni, A., & Siervo, R. (1994). The CELAY system: A comparison of the fit of direct and indirect fabrication techniques. International Journal of Prosthodontics, 7(5), 434–439.Google Scholar
  73. 73.
    Siervo, S., Pampalone, A., Siervo, P., & Siervo, R. (1994). Where is the gap? Machinable ceramic systems and conventional laboratory restorations at a glance. Quintessence International, 25(11), 773–779.Google Scholar
  74. 74.
    Rinke, S., Huls, A., & Jahn, L. (1995). Marginal accuracy and fracture strength of conventional and copy-milled all-ceramic crowns. International Journal of Prosthodontics, 8(4), 303–310.Google Scholar
  75. 75.
    Mormann, W. H., & Schug, J. (1997). Grinding precision and accuracy of fit of CEREC 2 CAD-CIM inlays. Journal of the American Dental Association, 128(1), 47–53.Google Scholar
  76. 76.
    Sulaiman, F., Chai, J., Jameson, L. M., & Wozniak, W. T. (1997). A comparison of the marginal fit of in-ceram, IPS empress, and Procera crowns. International Journal of Prosthodontics, 10(5), 478–484.Google Scholar
  77. 77.
    Sturdevant, J. R., Bayne, S. C., & Heymann, H. O. (1999). Margin gap size of ceramic inlays using second-generation CAD/CAM equipment. Journal of Esthetic and Restorative Dentistry, 11(4), 206–214.Google Scholar
  78. 78.
    Boening, K. W., Wolf, B. H., Schmidt, A. E., Kastner, K., & Walter, M. H. (2000). Clinical fit of Procera all ceram crowns. Journal of Prosthetic Dentistry, 84(4), 419–424.Google Scholar
  79. 79.
    Molin, M. K., & Karlsson, S. L. (2000). A randomized 5-year clinical evaluation of 3 ceramic inlay systems. International Journal of Prosthodontics, 13(3), 194–200.Google Scholar
  80. 80.
    Addi, S., Hedayati-Khams, A., Poya, A., & Sjogren, G. (2002). Interface gap size of manually and CAD/CAM-manufactured ceramic inlays/onlays in vitro. Journal of Dentistry, 30(1), 53–58.Google Scholar
  81. 81.
    Yeo, I. S., Yang, J. H., & Lee, J. B. (2003). In vitro marginal fit of three all-ceramic crown systems. The Journal of Prosthetic Dentistry, 90(5), 459–464.Google Scholar
  82. 82.
    Tomita, S., Shin-Ya, A., Gomi, H., Matsuda, T., Katagiri, S., Shin-Ya, A., et al. (2005). Machining accuracy of CAD/CAM ceramic crowns fabricated with repeated machining using the same diamond bur. Dental Materials Journal, 24(1), 123–133.Google Scholar
  83. 83.
    Reich, S., Wichmann, M., Nkenke, E., & Proeschel, P. (2005). Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. European Journal of Oral Sciences, 113(2), 174–179.Google Scholar
  84. 84.
    Al-Hiyasat, A. S., Saunders, W. P., Sharkey, S. W., Smith, G. M., & Gilmour, W. H. (1998). Investigation of human enamel wear against four dental ceramics and gold. Journal of Dentistry, 26(5–6), 487–495.Google Scholar
  85. 85.
    Ramp, M. H., Ramp, L. C., & Suzuki, S. (1999). Vertical height loss: An investigation of four restorative materials opposing enamel. Journal of Prosthodontics, 8(4), 252–257.Google Scholar
  86. 86.
    Imai, Y., Suzuki, S., & Fukushima, S. (2000). Enamel wear of modified porcelains. American Journal of Dentistry, 13(6), 315–323.Google Scholar
  87. 87.
    Yin, L., Song, X. F., Song, Y. L., Huang, T., & Li, J. (in press). An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. International Journal of Machine Tools and Manufacture.Google Scholar
  88. 88.
    Yin, L., Jahanmir, S., & Ives, L. K. (2003). Abrasive machining of porcelain and zirconia with a dental handpiece. Wear, 255(7–12), 975–989.Google Scholar
  89. 89.
    Luthardt, R. G., Holzhuter, M. S., Rudolph, H., Herold, V., & Walter, M. H. (2004). CAD/CAM-machining effects on Y-TZP zirconia. Dental Materials, 20(7), 655–662.Google Scholar
  90. 90.
    Yara, A., Ogura, H., Shinya, A., Tomita, S., Miyazaki, T., Sugai, Y., et al. (2005). Durability of diamond burs for the fabrication of ceramic crowns using dental CAD/CAM. Dental Materials Journal, 24(1), 134–139.Google Scholar
  91. 91.
    Finger, W. J., & Noack, M. D. (2000). Postadjustment polishing of CAD-CAM ceramic with luminescence diamond gel. American Journal of Dentistry, 13(1), 8–12.Google Scholar
  92. 92.
    Wilwerding, T., & Aiello, A. (1990). Comparative efficiency testing 330 carbide dental burs utilizing Macor substrate. Pediatric Dentistry, 12(3), 170–171.Google Scholar
  93. 93.
    Ayad, M. F., Rosenstiel, S. F., & Hassan, M. M. (1996). Surface roughness of dentin after tooth preparation with different rotary instrumentation. The Journal of Prosthetic Dentistry, 75(2), 122–128.Google Scholar
  94. 94.
    Siegel, S. C., & von Fraunhofer, J. A. (1996). Assessing the cutting efficiency of dental diamond burs. Journal of the American Dental Association, 127(6), 763–772.Google Scholar
  95. 95.
    Nishimura, K., Ikeda, M., Yoshikawa, T., Otsuki, M., & Tagami, J. (2005). Effect of various grit burs on marginal integrity of resin composite restorations. Journal of Medical and Dental Sciences, 52(1), 9–15.Google Scholar
  96. 96.
    Siegel, S. C., & von Fraunhofer, J. A. (2000). Cutting efficiency of three diamond bur grit sizes. The Journal of the American Dental Association, 131(12), 1706–1710.Google Scholar
  97. 97.
    Siegel, S. C., & Fraunhofer, J. A. (1999). Dental cutting with diamond burs: Heavy‐handed or light‐touch? Journal of Prosthodontics, 8(1), 3–9.Google Scholar
  98. 98.
    Rimondini, L., Cicognani Simoncini, F., & Carrassi, A. (2000). Micro‐morphometric assessment of titanium plasma‐sprayed coating removal using burs for the treatment of peri‐implant disease. Clinical Oral Implants Research, 11(2), 129–138.Google Scholar
  99. 99.
    Watanabe, I., Ohkubo, C., Ford, J. P., Atsuta, M., & Okabe, T. (2000). Cutting efficiency of air-turbine burs on cast titanium and dental casting alloys. Dental Materials, 16(6), 420–425.Google Scholar
  100. 100.
    Haselton, D. R., Lloyd, P. M., & Johnson, W. T. (2000). A comparison of the effects of two burs on endodontic access in all-ceramic high lucite crowns. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 89(4), 486–492.Google Scholar
  101. 101.
    Trava-Airoldi, V. J., Corat, E. J., Leite, N. F., do Carmo Nono, M., Ferreira, N. G., & Baranauskas, V. (1996). CVD diamond burrs—Development and applications. Diamond and Related Materials, 5(6–8), 857–860.Google Scholar
  102. 102.
    Borges, C. F., Magne, P., Pfender, E., & Heberlein, J. (1999). Dental diamond burs made with a new technology. Journal of Prosthetic Dentistry, 82(1), 73–79.Google Scholar
  103. 103.
    Sein, H., Ahmed, W., & Rego, C. (2002). Application of diamond coatings onto small dental tools. Diamond and Related Materials, 11(3–6), 731–735.Google Scholar
  104. 104.
    Sein, H., Ahmed, W., Jackson, M., Ali, N., & Gracio, J. (2003). Stress distribution in diamond films grown on cemented WC–Co dental burs using modified hot-filament CVD. Surface and Coatings Technology, 163–164, 196–202.Google Scholar
  105. 105.
    Ahmed, W., Sein, H., Ali, N., Gracio, J., & Woodwards, R. (2003). Diamond films grown on cemented WC–Co dental burs using an improved CVD method. Diamond and Related Materials, 12(8), 1300–1306.Google Scholar
  106. 106.
    Sein, H., Ahmed, W., Jackson, M., Polinic, R., Hassan, I., Amara, M., et al. (2004). Enhancing nucleation density and adhesion of polycrystalline diamond films deposited by HFCVD using surface treatments on Co cemented tungsten carbide. Diamond and Related Materials, 13(4–8), 610–615.Google Scholar
  107. 107.
    Ahmed, W., Sein, H., Jackson, M., & Polini, R. (2004). Chemical vapour deposition of diamond films onto tungsten carbide dental burs. Tribology International, 37(11–12), 957–964. (Novel Carbons in Tribolgy).Google Scholar
  108. 108.
    Ali, N., Cabral, G., Neto, V. F., Sein, H., Ahmed, W., & Gracio, J. (2003). Surface engineering of WC–Co used in dental tools technology. Materials Science and Technology, 19, 1273–1278.Google Scholar
  109. 109.
    Sein, H., Ahmed, W., Jackson, M., Woodwards, R., & Polini, R. (2004). Performance and characterisation of CVD diamond coated, sintered diamond and WC–Co cutting tools for dental and micromachining applications. Thin Solid Films, 447–448, 455–461.Google Scholar
  110. 110.
    Jackson, M. J., Sein, H., & Ahmed, W. (2004). Diamond coated dental bur machining of natural and synthetic dental materials. Journal of Materials Science: Materials in Medicine, 15(12), 1323–1331.Google Scholar
  111. 111.
    Polini, R., Allegri, A., Guarino, S., Quadrini, F., Sein, H., & Ahmed, W. (2004). Cutting force and wear evaluation in peripheral milling by CVD diamond dental tools. Thin Solid Films, 469–470, 161–166.Google Scholar
  112. 112.
    Yoshida, H., Nagata, C., Mirbod, S. M., Iwata, H., & Inaba, R. (1991). Analysis of subjective symptoms of upper extremities in dental technicians. Sangyo Igaku, 33(1), 17–22.Google Scholar
  113. 113.
    Nakladalova, M., Fialova, J., Korycanova, H., & Nakladal, Z. (1995). State of health in dental technicians with regard to vibration exposure and overload of upper extremities. Central European Journal of Public Health, 3(Suppl), 129–131.Google Scholar
  114. 114.
    Directive 2002/44/EC of the European Parliament and of the Council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration) (sixteenth individual Directive within the meaning of Article 16(1)of Directive 89/391/EEC). Official Journal of the European Communities 6.7.2002 L 177/13.Google Scholar
  115. 115.
    Mansfield, N. J. (2005). The European vibration directive–how will it affect the dental profession? British Dental Journal, 199(9), 575–577.Google Scholar
  116. 116.
    Jedrzejewski, T., & Ulejska, I. (1967). Air contamination in a dental laboratory as a result of mechanical procedures in the preparation of dental prosthesis. Protetyka Stomatologiczna, 11, 65–69.Google Scholar
  117. 117.
    Hugonnaud, C., & Lob, M. (1976). Risks incurred by dental technicians working on metallic prostheses. Sozial-und Praventivmedizin, 21(4), 139.Google Scholar
  118. 118.
    Leclerc, P., Fiessinger, J. N., Capron, F., Ameille, J., & Rochemaure, J. (1983). Erasmus syndrome in a dental technician. Importance of the prevention of occupational hazards. Annales de Medecine Interne (Paris), 134(7), 653–655.Google Scholar
  119. 119.
    Rom, W. N., Lockey, J. E., Lee, J. S., Kimball, A. C., Bang, K. M., Leaman, H., et al. (1984). Gibbons HL Pneumoconiosis and exposures of dental laboratory technicians. American Journal of Public Health, 74(11), 1252–1257.Google Scholar
  120. 120.
    Ichikawa, Y., Kusaka, Y., & Goto, S. (1985). Biological monitoring of cobalt exposure, based on cobalt concentrations in blood and urine. International Archives of Occupational and Environmental Health, 55(4), 269–276.Google Scholar
  121. 121.
    Morgenroth, K., Kronenberger, H., Michalke, G., & Schnabel, R. (1985). Morphology and pathogenesis of pneumoconiosis in dental technicians. Pathology, Research and Practice, 179(4–5), 528–536.Google Scholar
  122. 122.
    De Vuyst, P., Vande Weyer, R., De, Coster A., Marchandise, F. X., Dumortier, P., Ketelbant, P., et al. (1986). Dental technician’s pneumoconiosis. A report of two cases. American Review of Respiratory Disease, 133(2), 316–320.Google Scholar
  123. 123.
    Sheikh, M. E., & Guest, R. (1990). Respiratory ill-health in dental laboratory technicians: A comparative study of GP consultation rates. Journal of the Society of Occupational Medicine, 40(2), 68–70.Google Scholar
  124. 124.
    Choudat, D., Triem, S., Weill, B., Vicrey, C., Ameille, J., Brochard, P., et al. (1993). Respiratory symptoms, lung function, and pneumoconiosis among self employed dental technicians. British Journal of Industrial Medicine, 50(5), 443–449.Google Scholar
  125. 125.
    Nayebzadeh, A., Dufresne, A., Harvie, S., & Begin, R. (1999). Mineralogy of lung tissue in dental laboratory technicians’ pneumoconiosis. American Industrial Hygiene Association Journal, 60(3):349–353.Google Scholar
  126. 126.
    Choudat, D. (1994). Occupational lung diseases among dental technicians. Tubercle and Lung Disease, 75(2), 99–104.Google Scholar
  127. 127.
    Centers for Disease Control and Prevention (CDC). (2004). Silicosis in dental laboratory technicians—Five states, 1994-2000. MMWR. Morbidity and Mortality Weekly Report, 53(9), 195–197.Google Scholar
  128. 128.
    Brune, D., Beltesbrekke, H., & Strand, G. (1980). Dust in dental laboratories. Part II: Measurement of particle size distributions. Journal of Prosthetic Dentistry, 44(1), 82–87.Google Scholar
  129. 129.
    Collard, S. M., McDaniel, R. K., & Johnston, D. A. (1989). Particle size and composition of composite dusts. American Journal of Dentistry, 2(5), 247–253.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • H. Sein
    • 1
  • C. Maryan
    • 1
  • A. Jones
    • 1
  • J. Verran
    • 1
  • N. Ali
    • 1
  • I. U. Hassan
    • 1
  • C. Rego
    • 1
  • W. Ahmed
    • 2
  • M. J. Jackson
    • 3
    Email author
  1. 1.Manchester Metropolitan UniversityManchesterUK
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations