Titanium Dioxide Coatings for Medical Devices

  • F. PlacidoEmail author
  • A. McLean
  • A. A. Ogwu
  • W. Ademosu


Titanium dioxide (TiO2, titania) is a widely abundant and inexpensive material. In bulk form, it is produced as a white powder and it is the most widely used white pigment because of its brightness and very high refractive index (n = 2.4). Applications include filler pigment in paints, cosmetics, pharmaceuticals, food products (such as E171, e.g. white lettering on M&Ms) and toothpaste. When deposited as a thin film, its refractive index and colour make it an excellent reflective optical coating for dielectric mirrors. It is also widely used in sun block creams due to its photostability, high refractive index and UV absorption properties. This chapter focuses on describing the type of coatings that are used for medical devices and advances made in this important field of medical research.


Titanium Coatings Medical devices 


  1. 1.
    Blake, D. M., & Maness, P. C. (1999). Separation and Purification Methods, 28(1), 1–50.CrossRefGoogle Scholar
  2. 2.
    Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B., & Rouse, M. (1998). Applied Catalysis, B: Environmental, 1998(17), 25–36.CrossRefGoogle Scholar
  3. 3.
    Byrne, J. A., Davidson, A., Dunlop, P. S. M., & Eggins, B. R. (2002). Journal of Photochemistry and Photobiology A: Chemistry, 148, 365–374.CrossRefGoogle Scholar
  4. 4.
    Byrne, J. A., Hamilton, J. W. J., McMurray, T. A., Dunlop, P. S. M., Jackson, V., Donaldson, A., et al. (2006). Abstracts of the NSTI Conference, Boston.Google Scholar
  5. 5.
    Coleman, H. M., Routledge, E. J., Sumpter, J. P., Eggins, B. R., & Byrne, J. A. (2004). Water Research, 38, 3233–3240.CrossRefGoogle Scholar
  6. 6.
    Cosnier, S., Gondran, C., Senillou, A., Gratzel, M., & Vlachopoulos, N. (1997). Electroanalysis, 9(18), 1387–1392.CrossRefGoogle Scholar
  7. 7.
    Dunlop, P. S. M., Byrne, J. A., Manga, N., & Eggins, B. R. (2002). Journal of Photochemistry and Photobiology A: Chemistry, 148, 355–363.CrossRefGoogle Scholar
  8. 8.
    Fujishima, A., & Honda, K. (1972). Nature, 238, 37–38.CrossRefGoogle Scholar
  9. 9.
    Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21.CrossRefGoogle Scholar
  10. 10.
    Giavaresi, G., Ambrosio, L., Battiston, G. A., Casellato, U., Gerbasi, R., Finia, M., et al. (2004). Biomaterials, 25, 5583–5591.CrossRefGoogle Scholar
  11. 11.
    Hoffman, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Chemical Reviews, 95, 69–96.CrossRefGoogle Scholar
  12. 12.
    Holgers, K. M., & Ljungh, A. (1999). Biomaterials, 20, 1319–1326.CrossRefGoogle Scholar
  13. 13.
    Huang, N., Yang, P., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2003). Biomaterials, 24, 2177–2187.CrossRefGoogle Scholar
  14. 14.
    Kuhn, K. P., Chaberny, I. F., Massholder, K., Stickler, M., Benz, V. W., Sonntag, H.-G., et al. (2003). Chemosphere, 53, 71–77.CrossRefGoogle Scholar
  15. 15.
    Lee, S.-H., Kim, H.-W., Lee, E.-J., Li, L.-H., & Kim, H.-E. (2006). Journal of Biomaterials Applications, 20, 195–208.CrossRefGoogle Scholar
  16. 16.
    Liu, X., Zhao, X., Ding, C., & Chu, P. K. (2006). Applied Physics Letters, 88, 13905.CrossRefGoogle Scholar
  17. 17.
    McMurray, T. A., Byrne, J. A., Dunlop, P. S. M., Winkelman, J. G. M., Eggins, B. R., & McAdams, E. T. (2004). Applied Catalysis, A: General, 262(1), 105–110.CrossRefGoogle Scholar
  18. 18.
    McMurray, T. A., Byrne, J. A., Dunlop, P. S. M., & McAdams, E. T. (2005). Journal of Applied Electrochemistry, 35, 723–731.CrossRefGoogle Scholar
  19. 19.
    Mills, A., & Le Hunte, S. (1997). Journal of Photochemistry and Photobiology A: Chemistry, 108, 1–35.CrossRefGoogle Scholar
  20. 20.
    Nygren, H., Tengvall, P., & Lundstrom, I. (1997). Journal of Biomedical Materials Research, 34, 487–492.CrossRefGoogle Scholar
  21. 21.
    Ohko, Y., Utsumi, Y., Niwa, C., Tatsuma, T., Kobayakawa, K., Satoh, Y., et al. (2001). Journal of Biomedical Materials Research (Applied Biomaterials), 58, 97–101.CrossRefGoogle Scholar
  22. 22.
    Pan, J., Leygraf, C., Thierry, D., & Ektessabi, A. M. (1997). Journal of Biomedical Materials Research, 35, 309–318.CrossRefGoogle Scholar
  23. 23.
    Ramires, P. A., Romito, A., Cosentino, F., & Milella, E. (2001). Biomaterials, 22, 1467–1474.CrossRefGoogle Scholar
  24. 24.
    Shani Sekler, M., Levi, Y., Polyak, B., Dunlop, P. S. M., Byrne, J. A., & Marks, R. S., (2004). Journal of Applied Toxicology, 24, 395–400.CrossRefGoogle Scholar
  25. 25.
    Yang, Y., Glover, R., & Ong, J. L. (2003). Colloids and Surfaces B: Biointerfaces, 30, 291–297.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • F. Placido
    • 1
    Email author
  • A. McLean
    • 1
  • A. A. Ogwu
    • 1
  • W. Ademosu
    • 1
  1. 1.University of PaisleyScotlandUK

Personalised recommendations