Advertisement

Synthesis of Nanostructured Material and Its Applications as Surgical Tools and Devices for Monitoring Cellular Activities

  • Taimur AtharEmail author
Chapter

Abstract

Since the beginning of twenty-first century assembling of nanobricks with innovation and creativity lead to functional structural framework in order to fabricate a reliable–reproducible result-oriented nanodevice remains a synthetic challenge to the researchers and technologist. The use of nanomaterials as diagnostic tools is relatively a new area in medical research. The soft chemical approach help for synthesis of nanoparticle with distinctive physical, chemical, and electronic properties for various biosciences–clinical applications, opens new possibilities with controlled size particle and its distribution, surface chemistry, and agglomeration, which has attracted a remarkable interest in recent years precisely to label and to track abnormalities in vivo administration. Many contrast cell labeling and tracking strategies were used based on metal oxide nanopowder with high biocompatible to give a better contrast due to their Lewis-acid behavior of metal ions. With fast research in nano-biotechnology, demands for new synthetic approach for clinical functional materials have attracted interest for scientists. In coming times, it will revolutionize clinical studies both in vitro and vivo imaging with desired chemical composition, crystal phase, and surface morphology by better understanding biological barriers to target the drug at the malfunctional sites. Open image in new window

Keywords

Precursor Metal oxide Shape and size Soft chemical approach Diagnostic–clinical Biodistribution 

References

  1. 1.
    Talha, J. E., Nadia, M. Z., Abdelhamid, E. S., & Nasir, M. A. (2014). Handbook of soft nanoparticles for biomedical applications. In J. Callejas-Fernández & J. Estelrich (Eds.), RSC Nanoscience and Nanotechnology (pp. 312–341). ISBN 978-1-84973-811-8.Google Scholar
  2. 2.
    West, A. R. (1984). Solid state chemistry and its applications (p. 488). Hoboken: Wiley. ISBN 978-1-119-94294-8.Google Scholar
  3. 3.
    Jain, K. K. (2008). Nanomedicines: Application of nanobiotechnology in medical practice. Medical Principles and Practice, 17(2), 89–101.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Solomon, M. D., & Sourza, G. G. (2011). Recent progress in the therapeutic applications of nanotechnology. Current Opinion in Pediatrics, 23(2), 215–220.CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S., & Farokhzad, O. C. (2008). Nanoparticles in medicines, therapeutic applications and developments. Clinical Pharmacology and Therapeutics, 83(5), 761–769.CrossRefGoogle Scholar
  6. 6.
    Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2006). Nanodiagnostic: A new frontier for clinical laboratory medicines. Clinical Chemistry, 52(7), 1238–1246.CrossRefGoogle Scholar
  7. 7.
    Fendler, J. H. (Ed.) (1998). Nanoparticles and nanostructured films. Weinheim: Wiley. doi:10.1002/9783527612079Google Scholar
  8. 8.
    Jolivet, J. P. (2000). Metal oxide chemistry and synthesis, from solution to solid state. Chichester: Wiley. ISBN 978-0-471-97056-9.Google Scholar
  9. 9.
    Koch, C. C. (2002). Nanostructured materials. New York: William Andrew Publishing. ISBN 10:0-8155-1354-0-08154.Google Scholar
  10. 10.
    Yang, P. (2003). The chemistry of nanostructured materials. World Scientific. ISBN 130-978-981-4313-06-3.Google Scholar
  11. 11.
    Fedlheim, D. L., & Foss, C. A. (2001). Metal nanoparticles. CRC Press. ISBN 9780824706043.Google Scholar
  12. 12.
    Cao, G. (2004). Nanostructures and nanomaterials. Imperial College Press. ISBN 13:978-1860944802.Google Scholar
  13. 13.
    Vollath, D. (2008). Nanomaterials. Wiley. ISBN 978-3-527-33379-0.Google Scholar
  14. 14.
    Lalena, J. N., & Cleary, D. A. (2010). Principles of inorganic materials design. New York: Wiley. ISBN 978-0-470-40403-4.Google Scholar
  15. 15.
    Bandyopadhyay, A. K. (2007). Nanomaterials. New Age International. ISBN 978-81-224-2009-8.Google Scholar
  16. 16.
    Marzan, L. M., & Kamat, P. V. (2003). Nanoscale materials. Springer. ISBN 978-0-306-48108-6.Google Scholar
  17. 17.
    Keblinski, P., Wolf, O., Cleri, F., Phillpot, S. R., & Gleiter, H. (1998). MRS Bulletin 23(9), 36–41.CrossRefGoogle Scholar
  18. 18.
    Mathur, S., Shen, H., & Nalwa, H. S. (2004). Inorganic nanomaterials from molecular templates. Encyclopedia of Nanoscience and Nanotechnology 4, 131–191. ISBN 1-58883-159-0.Google Scholar
  19. 19.
    Wells, F. (1975). Structural inorganic chemistry. Oxford: Clarendon Press. ISBN 9780198553700.Google Scholar
  20. 20.
    Klabunde, K. J., & Richards, R. M. (2012). Nanoscale materials in chemistry (2nd ed.). New York: Wiley. ISBN 978-0-470-22270-6.Google Scholar
  21. 21.
    Muller, A., Cheetham, A. K., & Rao, C. N. R. (2007). Nanomaterials chemistry: Recent developments and new directions. Wiley. doi: 10.1002/352760247XGoogle Scholar
  22. 22.
    Fierro, J. L. G. (2005). Metal oxide: Chemistry and applications. Taylor & Francis. ISBN 9780824723712.Google Scholar
  23. 23.
    Schubert, U., & Hüsing, N. (2000). Synthesis of Inorganic materials. Weinheim: Wiley. ISBN 3-527- 29550-X.Google Scholar
  24. 24.
    Rodriguez, J. A., & Garcia, M. F. (2007). Synthesis, properties and application of oxide nanomaterials. Hoboken: Wiley. ISBN 978-0-471-72405-6.Google Scholar
  25. 25.
    Athar, T. (2008). Metal oxide nanopowder. In W. Ahmad & M. Jackson (Eds.), Emerging nanotechnologies for manufacturing (Vol. 13, pp. 13818). Eaton Avenue, Norwich, NY: William Andrews Inc. ISBN 978-0-8155-1583-8.Google Scholar
  26. 26.
    Kohli, P., & Martin, C. (2005) Res. Curr. Pharm. Biotechnol. 6(1), 35–47. doi:10.21741138920105367211Google Scholar
  27. 27.
    Mackenzie, J. D., & Bescher, E. P. (2007). Chemical routes in the synthesis of nanomaterials using the sol–gel process. Accounts of Chemical Research 40(9), 810–818. doi: 10.1021/ar7000149.CrossRefGoogle Scholar
  28. 28.
    Edler, K. J. (2004). Sol-gel processing. London: Kluwer. ISBN 1-4020-7969-9.Google Scholar
  29. 29.
    Klein, L. C. (1988). Sol-gel technology for thin film, fibres, performs, electronic, and speciality shape. Mill Road, Park Ridge, New Jersey,USA: Noyes Publications. ISBN 0-8155-1154-X.Google Scholar
  30. 30.
    Sapra, P., & Sarma, D. D. (2004) The chemistry of nanomaterials: Synthesis properties and application. In C. N. R. Rao, A. Muller & A. K. Cheetham (Eds.), Weenheem: Wiley. doi: 10.1002/352760247X.ch11CrossRefGoogle Scholar
  31. 31.
    Sakka, S. (Ed.) (2004). Hand book of sol-gel science and technology: Processing, characterization and applications. Norwell, USA: Kluwer Academic Publishers. ISBN 1-4020-7966-4.Google Scholar
  32. 32.
    Brinker, C. J., & Scherer, G. W. (1990). Sol-gel science: The physics and chemistry of sol-gel processing (p. 108). San Diego: Academic Press. ISBN 0-12-134970-5.Google Scholar
  33. 33.
    Pavia, D. L. G. L., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to spectroscopy (4th ed.). USA: Brooks/cole Cengage Learning. ISBN 13:978-0-495-11478-9.Google Scholar
  34. 34.
    Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of instrumental analysis (6th ed., p. 169). Belmont, CA: Thomson Brooks/Cole. ISBN 0495012017.Google Scholar
  35. 35.
    Stuart, H. B. (2004). Infrared spectroscopy fundamentals and applications. Chichester: Wiley. ISBN 978-0-470-85428-0.CrossRefGoogle Scholar
  36. 36.
    Atkins, P., & Paula, J. (2006). Physical chemistry (8th ed.). New York: Oxford University Press.Google Scholar
  37. 37.
    Nakamoto, K. (2008). Infrared and Raman spectra of inorganic and coordination compounds (6th ed.). Wiley-Interscience. ISBN 978-0-471-74493-1.Google Scholar
  38. 38.
    Davydov, A. A. (1990). Infrared spectroscopy of absorbed species on the surface of transition metal oxides. Wiley. ISBN 047191813X.Google Scholar
  39. 39.
    Soacrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts. Wiley. ISBN 10 0-470-09307-2.Google Scholar
  40. 40.
    Mitra, S. (2003). Sample preparation techniques in analytical chemistry. New Jersey: Wiley. ISBN 0-471-32845-6.Google Scholar
  41. 41.
    Lakowicz, J. R. (2006). Principle of fluorescence spectroscopy (3rd ed.). Baltimore: Springer. ISBN 978-0-387-46312-4.Google Scholar
  42. 42.
    Cullity, B. D. (1978). Elements of X-ray diffraction. London: Addison-Wesley Publishing Company Inc. ISBN 1178511421, 9781178511420.Google Scholar
  43. 43.
    Guinier, A. (1994). X-ray diffraction in crystals, imperfect crystals and amorphous bodies. New York: Dover Publications. ISBN 0486680118, 9780486680118.Google Scholar
  44. 44.
    Klug, M. P., & Alexander, L. E. (1974). X-ray diffraction procedure for polycrystalline and amorphous materials. New York: Wiley. ISBN 978-0-471-49369-3.Google Scholar
  45. 45.
    Powder Diffraction Files. (2015–16). JCPDS. (Ed:International Center for Diffraction Data, Pasadena, CA). http://www.icdd.com/
  46. 46.
    Watt, I. M. (1997). The principles and practice of electron microscopy (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-0521435918.Google Scholar
  47. 47.
    Gabbott, P. (2007). Principles and applications of thermal analysis. USA: Wiley-Blackwell Publishing. ISBN 978-1-4051-3171-1.Google Scholar
  48. 48.
    Niasaria, M. S., Mir, N., & Davar, F. (2009). Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron 28(6), 1111–1114. doi: 10.1066/j.poly.2009.01.026
  49. 49.
    Gelb, L. D., & Gubbins, K. E. (1998). Pore size distributions in porous glasses. Langmuir 14(8), 2097–2111. doi: 10.1021/la9808418CrossRefGoogle Scholar
  50. 50.
    Bae, K. H., Chung, H. J., & Park, T. G. (2011). Nanomaterials for cancer therapy and imaging. Molecules and Cells 31(4), 295–302.CrossRefGoogle Scholar
  51. 51.
    Barreto, J. A., Malley, W. O., & Kubeil, M. (2011). Nanomaterials: Applications in cancer imaging and therapy. Advanced Materials, 23(12), H18–H40.CrossRefGoogle Scholar
  52. 52.
    Jain, K. K. (2010) Advances in the field of nanooncology. BMC Med 8(83).Google Scholar
  53. 53.
    Ranganathan, R., Madanmohan, S., & Kesavan, A (2012). Nanomedicines: Towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicines 7, 1043–1060.Google Scholar
  54. 54.
    Bhattacharya, R., & Mukherjee, P. (2008). Biological properties of Naked metal nanoparticles. Advanced Drug Delivery Reviews, 60(11), 1289–1306.CrossRefGoogle Scholar
  55. 55.
    Veiseh, O., Sun, C., & Fang, C. (2009). Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobes across the blood-brain barrier. Cancer Research, 69(15), 6200–6207.CrossRefGoogle Scholar
  56. 56.
    John, R., & Boppart, S. A. (2011). Magnetomotive molecular nanoprobles. Current Medicinal Chemistry, 18(14), 2103–2114.CrossRefGoogle Scholar
  57. 57.
    Orringer, D. A., Koo, Y. E., Chen, T., Kopelman, R., Sagher, O., & Philbert, M. A. (2009). Small solution for big problems: The application of nanoparticles to brain tumor diagnosis and therapy. Clinical Pharmacology and Therapeutics, 85(5), 531–534.CrossRefGoogle Scholar
  58. 58.
    Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superaparamagnetic Iron oxide nanoparticles (SPIONS): Development surface modification and applications in Chemotherapy. Advanced Drug Delivery Review, 63(1–2), 24–26.CrossRefGoogle Scholar
  59. 59.
    Pan, Y., Du, X., Zhao, F., & Xu, B. (2012). Magnetic nanoparticles for manipulation of proteins and cells. Chemical Society Review, 41, 2912–2929.CrossRefGoogle Scholar
  60. 60.
    Kuntz, E. H., & Kuntz, H. D. (2006). Hand book of hepatology: Principles and practice: History, morphology, biochemistry, diagnostics, clinic, therapy (2nd ed., p. 3). Heidelberg: Springer. ISBN 978-3-540-28977-7.Google Scholar
  61. 61.
    Modi, G., Pillay, V., & Choonara, Y. E. (2012). Nanotechnological applications for the treatment of neurodegenerative disorders. Progress in Neurobiology, 88(4), 272–285.CrossRefGoogle Scholar
  62. 62.
    Streiecher, R. M., Schmidt, M., & Fiorito, S. (2007). Nanosurfaces and nanostructures for artificial implants. Nanomedicines, 2(6), 861–874.CrossRefGoogle Scholar
  63. 63.
    Chun, Y. W., & Webster, T. J. (2007). The role of nanomedicines in growing tissues. Annals of Biomedical Engineering, 37(10), 2034–2047.CrossRefGoogle Scholar
  64. 64.
    Laurencein, C. T., Kumbar, S. G., & Nukavarapu, S. P. (2007). Nanotechnology and orthopedics: A personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 6–10.Google Scholar
  65. 65.
    Hirst, S. M., Karakoti, A. S., & Tyler, R. D. (2009). Anti-inflammatory properties of CeO2 nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 5(24), 2848–2856.CrossRefGoogle Scholar
  66. 66.
    Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: A concise review. Nanomedicine: Nanotechnology, Biology and Medicine, 1193–212.Google Scholar
  67. 67.
    Wagner, V., Dullaart, A., Bock, A. K., & Zweck, A. (2007). The emerging nanomedicine landscape. Nature and Biotechnology, 24, 1211–1217.CrossRefGoogle Scholar
  68. 68.
    Chakraborty, M., Jain, S., & Rani, V. (2011). Nanotechnology: Emerging tool for diagnostics and therapeutics. Applied Biochemistry and Biotechnology, 165(5–6), 51178–51687.Google Scholar
  69. 69.
    Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. (2009). Nanomedicine—challenge and perspectives. Angewandte Chemie, 48(5), 872–897.CrossRefGoogle Scholar
  70. 70.
    Petros, A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9, 615–627.CrossRefGoogle Scholar
  71. 71.
    Praveen, S., Misra, R., & Sahoo, S. K. (2012). Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicines, 8, 147–166.CrossRefGoogle Scholar
  72. 72.
    Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensor for highly sensitive and biological and chemical species. Science, 293, 1289–1293.CrossRefGoogle Scholar
  73. 73.
    Albanese, A., Tang, P. S., & Khan, W. C. (2012). The effect of nanoparticles size, shape and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1016.CrossRefGoogle Scholar
  74. 74.
    Sapsford, E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., et al. (2013). “Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chemical Reviews, 113(3), 1904–2074.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.OBC, CSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations