Advertisement

Surface Modification of Interference Screws Used in Anterior Cruciate Ligament Reconstruction Surgery

  • Charalambos P. CharalambousEmail author
  • Tariq A. Kwaees
  • Paul M. Sutton
Chapter

Abstract

In anterior cruciate ligament reconstruction surgery the graft is often secured to the tibial and femoral bone tunnels using interference screws. Surface modification of such interference screws may be used to help promote graft-bone integration and reduce the risk of infection. This could allow faster post-surgical rehabilitation, earlier return to sports, and improved long term clinical outcomes. This chapter reviews surface modification techniques that have already been tried in anterior cruciate ligament reconstruction interference screws, but also reviews surface modification techniques that have been applied to other orthopaedic implants and which could potentially be extrapolated to cruciate ligament reconstruction surgery.

References

  1. 1.
    Gianotti, S. M., Marshall, S. W., Hume, P. A., & Bunt, L. (2009). Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study. Journal of Science and Medicine in Sport, 12(6), 622–627.Google Scholar
  2. 2.
    Siegel, L., Vandenakker-Albanese, C., & Siegel, D. (2012). Anterior cruciate ligament injuries: Anatomy, physiology, biomechanics, and management. Clinical Journal of Sport Medicine, 22(4), 349–355.Google Scholar
  3. 3.
    Joseph, A. M., Collins, C. L., Henke, N. M., Yard, E. E., Fields, S. K., & Comstock, R. D. (2013). A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. Journal of Athletic Training, 48(6), 810–817.Google Scholar
  4. 4.
    Mihata, L. C., Beutler, A. I., & Boden, B. P. (2006). Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: Implications for anterior cruciate ligament mechanism and prevention. American Journal of Sports Medicine, 34(6), 899–904.Google Scholar
  5. 5.
    Shelbourne, K. D., Davis, T. J., & Klootwyk, T. E. (1998). The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears: A prospective study. American Journal of Sports Medicine, 26(3), 402–408.Google Scholar
  6. 6.
    Souryal, T. O., & Freeman, T. R. (1993). Intercondylar notch size and anterior cruciate ligament injuries in athletes: A prospective study. American Journal of Sports Medicine, 21(4), 535–539.Google Scholar
  7. 7.
    Wordeman, S. C., Quatman, C. E., Kaeding, C. C., & Hewett, T. E. (2012). In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury: A systematic review and meta-analysis. American Journal of Sports Medicine, 40(7), 1673–1681.Google Scholar
  8. 8.
    Hashemi, J., Chandrashekar, N., Gill, B., et al. (2008). The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. Journal of Bone and Joint Surgery. American Volume, 90(12), 2724–2734.Google Scholar
  9. 9.
    Ramesh, R., Von Arx, O., Azzopardi, T., & Schranz, P. J. (2005). The risk of anterior cruciate ligament rupture with generalised joint laxity. Journal of Bone and Joint Surgery. British Volume, 87(6), 800–803.Google Scholar
  10. 10.
    Vaishya, R., & Hasija, R. (2013). Joint hypermobility and anterior cruciate ligament injury. Journal of Orthopaedic Surgery, 21(2), 182–184.Google Scholar
  11. 11.
    Kramer, L. C., Denegar, C. R., Buckley, W. E., & Hertel, J. (2007). Factors associated with anterior cruciate ligament injury: History in female athletes. Journal of Sports Medicine and Physical Fitness, 47(4), 446–454.Google Scholar
  12. 12.
    Evans, K. N., Kilcoyne, K. G., Dickens, J. F., et al. (2012). Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surgery, Sports Traumatology, Arthroscopy, 20(8), 1554–1559.Google Scholar
  13. 13.
    Zazulak, B. T., Hewett, T. E., Reeves, N. P., Goldberg, B., & Cholewicki, J. (2007). Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. American Journal of Sports Medicine, 35(7), 1123–1130.Google Scholar
  14. 14.
    Smith, H. C., Vacek, P., Johnson, R. J., et al. (2012). Risk factors for anterior cruciate ligament injury: A review of the literature—part 1: Neuromuscular and anatomic risk. Sports Health, 4(1), 69–78.Google Scholar
  15. 15.
    Hewett, T. E., Ford, K. R., Hoogenboom, B. J., & Myer, G. D. (2010). Understanding and preventing ACL injuries: Current biomechanical and epidemiologic considerations—Update 2010. North American Journal of Sports Physical Therapy, 5(4), 234–251.Google Scholar
  16. 16.
    Alentorn-Geli, E., Myer, G. D., Silvers, H. J., et al. (2009). Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surgery, Sports Traumatology, Arthroscopy, 17(7), 705–729.Google Scholar
  17. 17.
    Eastlack, M. E., Axe, M. J., & Snyder-Mackler, L. (1999). Laxity, instability, and functional outcome after ACL injury: Copers versus noncopers. Medicine and Science in Sports and Exercise, 31(2), 210–215.Google Scholar
  18. 18.
    Hurd, W. J., & Snyder-Mackler, L. (2007). Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. Journal of Orthopaedic Research, 25(10), 1369–1377.Google Scholar
  19. 19.
    Grindem, H., Eitzen, I., Engebretsen, L., Snyder-Mackler, L., & Risberg, M. A. (2014). Nonsurgical or surgical treatment of ACL injuries: Knee function, sports participation, and knee reinjury: The delaware-oslo ACL cohort study. Journal of Bone and Joint Surgery. American Volume, 96(15), 1233–1241.Google Scholar
  20. 20.
    Andersson, C., Odensten, M., & Gillquist, J. (1991). Knee function after surgical or nonsurgical treatment of acute rupture of the anterior cruciate ligament: A randomized study with a long-term follow-up period. Clinical Orthopaedics and Related Research, 264, 255–263.Google Scholar
  21. 21.
    Chechik, O., Amar, E., Khashan, M., Lador, R., Eyal, G., & Gold, A. (2013). An international survey on anterior cruciate ligament reconstruction practices. International Orthopaedics, 37(2), 201–206.Google Scholar
  22. 22.
    Suomalainen, P., Kannus, P., & Jarvela, T. (2013). Double-bundle anterior cruciate ligament reconstruction: A review of literature. International Orthopaedics, 37(2), 227–232.Google Scholar
  23. 23.
    Jarvela, T., & Jarvela, S. (2013). Double-bundle versus single-bundle anterior cruciate ligament reconstruction. Clinics in Sports Medicine, 32(1), 81–91.Google Scholar
  24. 24.
    Li, Y. L., Ning, G. Z., Wu, Q., et al. (2014). Single-bundle or double-bundle for anterior cruciate ligament reconstruction: A meta-analysis. The Knee, 21(1), 28–37.Google Scholar
  25. 25.
    van Eck, C. F., Schreiber, V. M., Mejia, H. A., et al. (2010). “Anatomic” anterior cruciate ligament reconstruction: A systematic review of surgical techniques and reporting of surgical data. Arthroscopy, 26(Suppl 9), S2–S12.Google Scholar
  26. 26.
    Hapa, O., & Barber, F. A. (2009). ACL fixation devices. Sports Medicine and Arthroscopy Review, 17(4), 217–223.Google Scholar
  27. 27.
    Saccomanni, B. (2011). Graft fixation alternatives in anterior cruciate ligament reconstruction. Musculoskeletal Surgery, 95(3), 183–191.Google Scholar
  28. 28.
    Martin, S. D., Martin, T. L., & Brown, C. H. (2002). Anterior cruciate ligament graft fixation. Orthopedic Clinics of North America, 33(4), 685–696.Google Scholar
  29. 29.
    Lee, Y. H., Siebold, R., & Paessler, H. H. (2014). Implant-free ACL reconstruction: A review. Archives of Orthopaedic and Trauma Surgery, 134(3), 395–404.Google Scholar
  30. 30.
    Mascarenhas, R., Saltzman, B. M., Sayegh, E. T., et al. (2015). Bioabsorbable versus metallic interference screws in anterior cruciate ligament reconstruction: A systematic review of overlapping meta-analyses. Arthroscopy, 31(3), 561–568.Google Scholar
  31. 31.
    Gulman, B., Mollaian, S., & Tomak, Y. (1999). Femoral fixation of patellar tendon grafts using the bone-block locking technique in ACL reconstruction. A biomechanical study. Bulletin/Hospital for Joint Diseases, 58(2), 71–75.Google Scholar
  32. 32.
    Deehan, D. J., & Cawston, T. E. (2005). The biology of integration of the anterior cruciate ligament. Journal of Bone and Joint Surgery. British Volume, 87(7), 889–895.Google Scholar
  33. 33.
    McGuire, D. A., Barber, F. A., Elrod, B. F., & Paulos, L. E. (1999). Bioabsorbable interference screws for graft fixation in anterior cruciate ligament reconstruction. Arthroscopy, 15(5), 463–473.Google Scholar
  34. 34.
    Duquin, T. R., Wind, W. M., Fineberg, M. S., Smolinski, R. J., & Buyea, C. M. (2009). Current trends in anterior cruciate ligament reconstruction. The Journal of Knee Surgery, 22(1), 7–12.Google Scholar
  35. 35.
    Moisala, A. S., Jarvela, T., Paakkala, A., Paakkala, T., Kannus, P., & Jarvinen, M. (2008). Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: A prospective randomized study. Knee Surgery, Sports Traumatology, Arthroscopy, 16(12), 1080–1086.Google Scholar
  36. 36.
    Brand, J. C, Jr, Nyland, J., Caborn, D. N., & Johnson, D. L. (2005). Soft-tissue interference fixation: Bioabsorbable screw versus metal screw. Arthroscopy, 21(8), 911–916.Google Scholar
  37. 37.
    Zantop, T., Weimann, A., Schmidtko, R., Herbort, M., Raschke, M. J., & Petersen, W. (2006). Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: In vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws. Arthroscopy, 22(11), 1204–1210.Google Scholar
  38. 38.
    Pereira, H., Correlo, V. M., Silva-Correia, J., Oliveira, J. M., Reis, R. L., & Espregueira-Mendes, J. (2013). Migration of “bioabsorbable” screws in ACL repair. How much do we know? A systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 21(4), 986–994.Google Scholar
  39. 39.
    Johnston, M., Morse, A., Arrington, J., Pliner, M., & Gasser, S. (2011). Resorption and remodeling of hydroxyapatite-poly-L-lactic acid composite anterior cruciate ligament interference screws. Arthroscopy, 27(12), 1671–1678.Google Scholar
  40. 40.
    Suchenski, M., McCarthy, M. B., Chowaniec, D., et al. (2010). Material properties and composition of soft-tissue fixation. Arthroscopy, 26(6), 821–831.Google Scholar
  41. 41.
    Radford, M. J., Noakes, J., Read, J., & Wood, D. G. (2005). The natural history of a bioabsorbable interference screw used for anterior cruciate ligament reconstruction with a 4-strand hamstring technique. Arthroscopy, 21(6), 707–710.Google Scholar
  42. 42.
    Mavrogenis, A. F., Dimitriou, R., Parvizi, J., & Babis, G. C. (2009). Biology of implant osseointegration. Journal of Musculoskeletal and Neuronal Interactions, 9(2), 61–71.Google Scholar
  43. 43.
    Bernstein, A., Tecklenburg, K., Sudkamp, P., & Mayr, H. O. (2012). Adhesion and proliferation of human osteoblast-like cells on different biodegradable implant materials used for graft fixation in ACL-reconstruction. Archives of Orthopaedic and Trauma Surgery, 132(11), 1637–1645.Google Scholar
  44. 44.
    Andernord, D., Bjornsson, H., Petzold, M., et al. (2014). Surgical predictors of early revision surgery after anterior cruciate ligament reconstruction: Results from the swedish national knee ligament register on 13,102 patients. American Journal of Sports Medicine, 42(7), 1574–1582.Google Scholar
  45. 45.
    Iorio, R., Di Sanzo, V., Vadala, A., et al. (2013). ACL reconstruction with hamstrings: How different technique and fixation devices influence bone tunnel enlargement. European Review for Medical and Pharmacological Sciences, 17(21), 2956–2961.Google Scholar
  46. 46.
    Leonardi, A. B., Duarte A, Jr, & Severino, N. R. (2014). Bone tunnel enlargement on anterior cruciate ligament reconstruction. Acta Ortopedica Brasileira, 22(5), 240–244.Google Scholar
  47. 47.
    Claes, S., Verdonk, P., Forsyth, R., & Bellemans, J. (2011). The, “ligamentization” process in anterior cruciate ligament reconstruction: What happens to the human graft? A systematic review of the literature. American Journal of Sports Medicine, 39(11), 2476–2483.Google Scholar
  48. 48.
    Rodeo, S. A., Arnoczky, S. P., Torzilli, P. A., Hidaka, C., & Warren, R. F. (1993). Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. Journal of Bone and Joint Surgery. American Volume, 75(12), 1795–1803.Google Scholar
  49. 49.
    Grana, W. A., Egle, D. M., Mahnken, R., & Goodhart, C. W. (1994). An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. American Journal of Sports Medicine, 22(3), 344–351.Google Scholar
  50. 50.
    Pinczewski, L. A., Clingeleffer, A. J., Otto, D. D., Bonar, S. F., & Corry, I. S. (1997). Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy, 13(5), 641–643.Google Scholar
  51. 51.
    Mall, N. A., Chalmers, P. N., Moric, M., et al. (2014). Incidence and trends of anterior cruciate ligament reconstruction in the united states. American Journal of Sports Medicine, 42(10), 2363–2370.Google Scholar
  52. 52.
    Archibald-Seiffer, N., Jacobs, J. C, Jr, Saad, C., Jevsevar, D. S., & Shea, K. G. (2015). Review of anterior cruciate ligament reconstruction cost variance within a regional health care system. American Journal of Sports Medicine, 43(6), 1408–1412.Google Scholar
  53. 53.
    Fay, C. M. (2011). Complications associated with use of anterior cruciate ligament fixation devices. American Journal of Orthopedics (Belle Mead, NJ), 40(6), 305–310.Google Scholar
  54. 54.
    Phelan, D. T., Cohen, A. B., & Fithian, D. C. (2006). Complications of anterior cruciate ligament reconstruction. Instructional Course Lectures, 55, 465–474.Google Scholar
  55. 55.
    Charalambous, C. P., Alvi, F., & Sutton, P. M. (2015). Management of intraoperative complications in arthroscopic primary anterior cruciate ligament reconstruction. The Journal of Knee Surgery, 28(2), 165–174.Google Scholar
  56. 56.
    Namkoong, S., Heywood, C. S., Bravman, J. T., Ieyasa, K., Kummer, F. J., & Meislin, R. J. (2006). The effect of interference screw diameter on soft tissue graft fixation. Bulletin/Hospital for Joint Diseases, 63(3–4), 153–155.Google Scholar
  57. 57.
    Harvey, A. R., Thomas, N. P., & Amis, A. A. (2003). The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. The Knee, 10(1), 97–102.Google Scholar
  58. 58.
    Cohen, S. B., Pandarinath, R., O’Hagan, T., et al. (2015). Results of ACL reconstruction with tibial retroscrew fixation: Comparison of clinical outcomes and tibial tunnel widening. The Physician and Sportsmedicine, 43(2), 138–142.Google Scholar
  59. 59.
    Lind, M., Feller, J., & Webster, K. E. (2009). Tibial bone tunnel widening is reduced by polylactate/hydroxyapatite interference screws compared to metal screws after ACL reconstruction with hamstring grafts. The Knee, 16(6), 447–451.Google Scholar
  60. 60.
    Hantes, M. E., Mastrokalos, D. S., Yu, J., & Paessler, H. H. (2004). The effect of early motion on tibial tunnel widening after anterior cruciate ligament replacement using hamstring tendon grafts. Arthroscopy, 20(6), 572–580.Google Scholar
  61. 61.
    Yu, J. K., & Paessler, H. H. (2005). Relationship between tunnel widening and different rehabilitation procedures after anterior cruciate ligament reconstruction with quadrupled hamstring tendons. Chinese Medical Journal (English), 118(4), 320–326.Google Scholar
  62. 62.
    Siebold, R., Kiss, Z. S., & Morris, H. G. (2008). Effect of compaction drilling during ACL reconstruction with hamstrings on postoperative tunnel widening. Archives of Orthopaedic and Trauma Surgery, 128(5), 461–468.Google Scholar
  63. 63.
    Hoher, J., Moller, H. D., & Fu, F. H. (1998). Bone tunnel enlargement after anterior cruciate ligament reconstruction: Fact or fiction? Knee Surgery, Sports Traumatology, Arthroscopy, 6(4), 231–240.Google Scholar
  64. 64.
    Goodman, S. B., Yao, Z., Keeney, M., & Yang, F. (2013). The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174–3183.Google Scholar
  65. 65.
    Streicher, R. M., Schmidt, M., & Fiorito, S. (2007). Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine (London), 2(6), 861–874.Google Scholar
  66. 66.
    Molloy, T., Wang, Y., & Murrell, G. (2003). The roles of growth factors in tendon and ligament healing. Sports Medicine, 33(5), 381–394.Google Scholar
  67. 67.
    Sciore, P., Boykiw, R., & Hart, D. A. (1998). Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue. Journal of Orthopaedic Research, 16(4), 429–437.Google Scholar
  68. 68.
    Wolfman, N. M., Hattersley, G., Cox, K., et al. (1997). Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. Journal of Clinical Investigation, 100(2), 321–330.Google Scholar
  69. 69.
    Sasaki, K., Kuroda, R., Ishida, K., et al. (2008). Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. American Journal of Sports Medicine, 36(8), 1519–1527.Google Scholar
  70. 70.
    Hashimoto, Y., Yoshida, G., Toyoda, H., & Takaoka, K. (2007). Generation of tendon-to-bone interface “enthesis” with use of recombinant BMP-2 in a rabbit model. Journal of Orthopaedic Research, 25(11), 1415–1424.Google Scholar
  71. 71.
    Hunziker, E. B., Enggist, L., Kuffer, A., Buser, D., & Liu, Y. (2012). Osseointegration: The slow delivery of BMP-2 enhances osteoinductivity. Bone, 51(1), 98–106.Google Scholar
  72. 72.
    Mihelic, R., Pecina, M., Jelic, M., et al. (2004). Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. American Journal of Sports Medicine, 32(7), 1619–1625.Google Scholar
  73. 73.
    Mayr, H. O., Dietrich, M., Fraedrich, F., et al. (2009). Microporous pure beta-tricalcium phosphate implants for press-fit fixation of anterior cruciate ligament grafts: Strength and healing in a sheep model. Arthroscopy, 25(9), 996–1005.Google Scholar
  74. 74.
    Demirag, B., Sarisozen, B., Ozer, O., Kaplan, T., & Ozturk, C. (2005). Enhancement of tendon-bone healing of anterior cruciate ligament grafts by blockage of matrix metalloproteinases. Journal of Bone and Joint Surgery. American Volume, 87(11), 2401–2410.Google Scholar
  75. 75.
    Bedi, A., Kovacevic, D., Hettrich, C., et al. (2010). The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. Journal of Shoulder and Elbow Surgery, 19(3), 384–391.Google Scholar
  76. 76.
    Rodeo, S. A., Kawamura, S., Ma, C. B., et al. (2007). The effect of osteoclastic activity on tendon-to-bone healing: An experimental study in rabbits. Journal of Bone and Joint Surgery. American Volume, 89(10), 2250–2259.Google Scholar
  77. 77.
    Sul, Y. T., Johansson, C. B., & Albrektsson, T. (2002). Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. International Journal of Oral and Maxillofacial Implants, 17(5), 625–634.Google Scholar
  78. 78.
    Mutsuzaki, H., Ito, A., Sakane, M., et al. (2007). Calcium phosphate coating formed in infusion fluid mixture to enhance fixation strength of titanium screws. Journal of Materials Science. Materials in Medicine, 18(9), 1799–1808.Google Scholar
  79. 79.
    Rammelt, S., Heck, C., Bernhardt, R., et al. (2007). In vivo effects of coating loaded and unloaded ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. Journal of Orthopaedic Research, 25(8), 1052–1061.Google Scholar
  80. 80.
    Sartori, M., Giavaresi, G., Parrilli, A., et al. (2015). Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. International Orthopaedics, 39(10), 2041–2052.Google Scholar
  81. 81.
    Wermelin, K., Suska, F., Tengvall, P., Thomsen, P., & Aspenberg, P. (2008). Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone, 42(2), 365–371.Google Scholar
  82. 82.
    Wermelin, K., Tengvall, P., & Aspenberg, P. (2007). Surface-bound bisphosphonates enhance screw fixation in rats—Increasing effect up to 8 weeks after insertion. Acta Orthopaedica, 78(3), 385–392.Google Scholar
  83. 83.
    Lu, Y., Markel, M. D., Nemke, B., Lee, J. S., Graf, B. K., & Murphy, W. L. (2009). Influence of hydroxyapatite-coated and growth factor-releasing interference screws on tendon-bone healing in an ovine model. Arthroscopy, 25(12), 1427–1434.Google Scholar
  84. 84.
    Rieger, E., Dupret-Bories, A., Salou, L., et al. (2015). Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale, 7(21), 9908–9918.Google Scholar
  85. 85.
    Bahl, S., Shreyas, P., Trishul, M. A., Suwas, S., & Chatterjee, K. (2015). Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 7(17), 7704–7716.Google Scholar
  86. 86.
    Webster, T. J., & Ejiofor, J. U. (2004). Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4 V, and CoCrMo. Biomaterials, 25(19), 4731–4739.Google Scholar
  87. 87.
    Price, R. L., Ellison, K., Haberstroh, K. M., & Webster, T. J. (2004). Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. Journal of Biomedical Materials Research Part A, 70(1), 129–138.Google Scholar
  88. 88.
    Katainen, J., Paajanen, M., Ahtola, E., Pore, V., & Lahtinen, J. (2006). Adhesion as an interplay between particle size and surface roughness. Journal of Colloid and Interface Science, 304(2), 524–529.Google Scholar
  89. 89.
    Lin, L., Wang, H., Ni, M., et al. (2014). Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. Journal of Orthopaedic Translation., 2, 35–42.Google Scholar
  90. 90.
    Miyauchi, T., Yamada, M., Yamamoto, A., et al. (2010). The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials, 31(14), 3827–3839.Google Scholar
  91. 91.
    Biggs, M. J., Richards, R. G., Gadegaard, N., Wilkinson, C. D., & Dalby, M. J. (2007). The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. Journal of Materials Science. Materials in Medicine, 18(2), 399–404.Google Scholar
  92. 92.
    Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomaterialia, 11, 494–502.Google Scholar
  93. 93.
    Goldman, M., Juodzbalys, G., & Vilkinis, V. (2014). Titanium surfaces with nanostructures influence on osteoblasts proliferation: A systematic review. Journal of Oral & Maxillofacial Research, 5(3), e1.Google Scholar
  94. 94.
    Zhao, X., Wang, G., Zheng, H., et al. (2013). Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility. ACS Applied Materials & Interfaces, 5(16), 8203–8209.Google Scholar
  95. 95.
    Roy, M., Bandyopadhyay, A., & Bose, S. (2011). Induction plasma sprayed sr and mg doped nano hydroxyapatite coatings on ti for bone implant. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 99(2), 258–265.Google Scholar
  96. 96.
    Warren, D. K., Nickel, K. B., Wallace, A. E., Mines, D., Fraser, V. J., & Olsen, M. A. (2014). Can additional information be obtained from claims data to support surgical site infection diagnosis codes? Infection Control and Hospital Epidemiology, 35(Suppl 3), S124–S132.Google Scholar
  97. 97.
    Scully, W. F., Fisher, S. G., Parada, S. A., & Arrington, E. D. (2013). Septic arthritis following anterior cruciate ligament reconstruction: A comprehensive review of the literature. Journal of Surgical Orthopaedic Advances, 22(2), 127–133.Google Scholar
  98. 98.
    Wang, C., Lee, Y. H., & Siebold, R. (2014). Recommendations for the management of septic arthritis after ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 22(9), 2136–2144.Google Scholar
  99. 99.
    Maletis, G. B., Inacio, M. C., Reynolds, S., Desmond, J. L., Maletis, M. M., & Funahashi, T. T. (2013). Incidence of postoperative anterior cruciate ligament reconstruction infections: Graft choice makes a difference. American Journal of Sports Medicine, 41(8), 1780–1785.Google Scholar
  100. 100.
    Burks, R. T., Friederichs, M. G., Fink, B., Luker, M. G., West, H. S., & Greis, P. E. (2003). Treatment of postoperative anterior cruciate ligament infections with graft removal and early reimplantation. American Journal of Sports Medicine, 31(3), 414–418.Google Scholar
  101. 101.
    Toms, A. D., Davidson, D., Masri, B. A., & Duncan, C. P. (2006). The management of peri-prosthetic infection in total joint arthroplasty. Journal of Bone and Joint Surgery. British Volume, 88(2), 149–155.Google Scholar
  102. 102.
    Teughels, W., Van Assche, N., Sliepen, I., & Quirynen, M. (2006). Effect of material characteristics and/or surface topography on biofilm development. Clinical Oral Implants Research, 17(Suppl 2), 68–81.Google Scholar
  103. 103.
    Cerca, N., Martins, S., Pier, G. B., Oliveira, R., & Azeredo, J. (2005). The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm. Research in Microbiology, 156(5–6), 650–655.Google Scholar
  104. 104.
    Brause, B. D. (1989). Prosthetic joint infections. Current Opinion in Rheumatology, 1(2), 194–198.Google Scholar
  105. 105.
    Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(5418), 1318–1322.Google Scholar
  106. 106.
    Stoodley, P., Ehrlich, G. D., Sedghizadeh, P. P., et al. (2011). Orthopaedic biofilm infections. Current Orthopaedic Practice, 22(6), 558–563.Google Scholar
  107. 107.
    Gallo, J., Holinka, M., & Moucha, C. S. (2014). Antibacterial surface treatment for orthopaedic implants. International Journal of Molecular Sciences, 15(8), 13849–13880.Google Scholar
  108. 108.
    An, Y. H., & Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 43(3), 338–348.Google Scholar
  109. 109.
    Katsikogianni, M., & Missirlis, Y. F. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells & Materials, 8, 37–57.Google Scholar
  110. 110.
    Galliani, S., Viot, M., Cremieux, A., & Van der Auwera, P. (1994). Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene: Influence of hydrophobicity, slime production, plasma, albumin, fibrinogen, and fibronectin. Journal of Laboratory and Clinical Medicine, 123(5), 685–692.Google Scholar
  111. 111.
    Gristina, A. G., Naylor, P., & Myrvik, Q. (1988). Infections from biomaterials and implants: A race for the surface. Medical Progress Through Technology, 14(3–4), 205–224.Google Scholar
  112. 112.
    Bouchet, A. M., Iannucci, N. B., Pastrian, M. B., et al. (2014). Biological activity of antibacterial peptides matches synergism between electrostatic and non electrostatic forces. Colloids and Surfaces B: Biointerfaces, 114, 363–371.Google Scholar
  113. 113.
    Gottenbos, B., van der Mei, H. C., Klatter, F., et al. (2003). Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials, 24(16), 2707–2710.Google Scholar
  114. 114.
    Poncin-Epaillard, F., Herry, J. M., Marmey, P., Legeay, G., Debarnot, D., & Bellon-Fontaine, M. N. (2013). Elaboration of highly hydrophobic polymeric surface–a potential strategy to reduce the adhesion of pathogenic bacteria? Materials Science & Engineering. C, Materials for Biological Applications, 33(3), 1152–1161.Google Scholar
  115. 115.
    Scheuerman, T. R., Camper, A. K., & Hamilton, M. A. (1998). Effects of substratum topography on bacterial adhesion. Journal of Colloid and Interface Science, 208(1), 23–33.Google Scholar
  116. 116.
    Antoci, V, Jr, Adams, C. S., Parvizi, J., Ducheyne, P., Shapiro, I. M., & Hickok, N. J. (2007). Covalently attached vancomycin provides a nanoscale antibacterial surface. Clinical Orthopaedics and Related Research, 461, 81–87.Google Scholar
  117. 117.
    Charville, G. W., Hetrick, E. M., Geer, C. B., & Schoenfisch, M. H. (2008). Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials, 29(30), 4039–4044.Google Scholar
  118. 118.
    An, Y. H., Stuart, G. W., McDowell, S. J., McDaniel, S. E., Kang, Q., & Friedman, R. J. (1996). Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. Journal of Orthopaedic Research, 14(5), 846–849.Google Scholar
  119. 119.
    Williams, R. J., Henderson, B., Sharp, L. J., & Nair, S. P. (2002). Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infection and Immunity, 70(12), 6805–6810.Google Scholar
  120. 120.
    Francois, P., Letourneur, D., Lew, D. P., Jozefonwicz, J., & Vaudaux, P. (1999). Inhibition by heparin and derivatized dextrans of Staphylococcus epidermidis adhesion to in vitro fibronectin-coated or explanted polymer surfaces. Journal of Biomaterials Science, Polymer Edition, 10(12), 1207–1221.Google Scholar
  121. 121.
    Arciola, C. R., Campoccia, D., Gamberini, S., Donati, M. E., & Montanaro, L. (2004). Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials, 25(19), 4825–4829.Google Scholar
  122. 122.
    Puckett, S. D., Taylor, E., Raimondo, T., & Webster, T. J. (2010). The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 31(4), 706–713.Google Scholar
  123. 123.
    Parvez, N., Jinadatha, C., Fader, R., et al. (2010). Universal MRSA nasal surveillance: Characterization of outcomes at a tertiary care center and implications for infection control. Southern Medical Journal, 103(11), 1084–1091.Google Scholar
  124. 124.
    Hoene, A., Prinz, C., Walschus, U., et al. (2013). In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomedical Materials, 8(3), 035009-6041/8/3/035009.Google Scholar
  125. 125.
    Hans, M., Erbe, A., Mathews, S., Chen, Y., Solioz, M., & Mucklich, F. (2013). Role of copper oxides in contact killing of bacteria. Langmuir, 29(52), 16160–16166.Google Scholar
  126. 126.
    Elizabeth, E., Baranwal, G., Krishnan, A. G., Menon, D., & Nair, M. (2014). ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology, 25(11), 115101-4484/25/11/115101.Google Scholar
  127. 127.
    Hu, H., Zhang, W., Qiao, Y., Jiang, X., Liu, X., & Ding, C. (2012). Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomaterialia, 8(2), 904–915.Google Scholar
  128. 128.
    Tran, P. A., & Webster, T. J. (2011). Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine, 6, 1553–1558.Google Scholar
  129. 129.
    Holinka, J., Pilz. M., Kubista, B., Presterl, E., & Windhager, R. (2013). Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone & Joint Journal, 95-B(5), 678–682.Google Scholar
  130. 130.
    Singh, A. V., Vyas, V., Patil, R., et al. (2011). Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE, 6(9), e25029.Google Scholar
  131. 131.
    Shida, T., Koseki, H., Yoda, I., Horiuchi, H., Sakoda, H., & Osaki, M. (2013). Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: An in vitro study. International Journal of Nanomedicine, 8, 3955–3961.Google Scholar
  132. 132.
    Ivanova, E. P., Truong, V. K., Wang, J. Y., et al. (2010). Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir, 26(3), 1973–1982.Google Scholar
  133. 133.
    Truong, V. K., Lapovok, R., Estrin, Y. S., et al. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31(13), 3674–3683.Google Scholar
  134. 134.
    Zhu, H., Guo, Z., & Liu, W. (2014). Adhesion behaviors on superhydrophobic surfaces. Chemical Communications (Cambridge, England), 50(30), 3900–3913.Google Scholar
  135. 135.
    Stallard, C. P., McDonnell, K. A., Onayemi, O. D., O’Gara, J. P., & Dowling, D. P. (2012). Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases, 7(1–4), 31-012-0031-0.Google Scholar
  136. 136.
    Pandit, V., Zuidema, J. M., Venuto, K. N., et al. (2013). Evaluation of multifunctional polysaccharide hydrogels with varying stiffness for bone tissue engineering. Tissue Engineering Part A, 19(21–22), 2452–2463.Google Scholar
  137. 137.
    Zhao, C., Li, X., Li, L., Cheng, G., Gong, X., & Zheng, J. (2013). Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir, 29(5), 1517–1524.Google Scholar
  138. 138.
    Drago, L., Boot, W., Dimas, K., et al. (2014). Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro? Clinical Orthopaedics and Related Research, 472(11), 3311–3323.Google Scholar
  139. 139.
    Zan, X., Kozlov, M., McCarthy, T. J., & Su, Z. (2010). Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid). Biomacromolecules, 11(4), 1082–1088.Google Scholar
  140. 140.
    Bernthal, N. M., Stavrakis, A. I., Billi, F., et al. (2010). A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS ONE, 5(9), e12580.Google Scholar
  141. 141.
    Follmann, H. D., Martins, A. F., Gerola, A. P., et al. (2012). Antiadhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Biomacromolecules, 13(11), 3711–3722.Google Scholar
  142. 142.
    Neoh, K. G., & Kang, E. T. (2011). Combating bacterial colonization on metals via polymer coatings: Relevance to marine and medical applications. ACS Applied Materials & Interfaces, 3(8), 2808–2819.Google Scholar
  143. 143.
    Muszanska, A. K., Rochford, E. T., Gruszka, A., et al. (2014). Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules, 15(6), 2019–2026.Google Scholar
  144. 144.
    Hickok, N. J., & Shapiro, I. M. (2012). Immobilized antibiotics to prevent orthopaedic implant infections. Advanced Drug Delivery Reviews, 64(12), 1165–1176.Google Scholar
  145. 145.
    Walter, M. S., Frank, M. J., Satue, M., et al. (2014). Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dental Materials, 30(2), 200–214.Google Scholar
  146. 146.
    Antoci, V, Jr, King, S. B., Jose, B., et al. (2007). Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. Journal of Orthopaedic Research, 25(7), 858–866.Google Scholar
  147. 147.
    Chennell, P., Feschet-Chassot, E., Devers, T., Awitor, K. O., Descamps, S., & Sautou, V. (2013). In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. International Journal of Pharmaceutics, 455(1–2), 298–305.Google Scholar
  148. 148.
    Rapsch, K., Bier, F. F., Tadros, M., & von Nickisch-Rosenegk, M. (2014). Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties. Bioconjugate Chemistry, 25(2), 308–319.Google Scholar
  149. 149.
    Costa, F., Carvalho, I. F., Montelaro, R. C., Gomes, P., & Martins, M. C. (2011). Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomaterialia, 7(4), 1431–1440.Google Scholar
  150. 150.
    Zheng, D., Neoh, K. G., Shi, Z., & Kang, E. T. (2013). Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium. Journal of Colloid and Interface Science, 406, 238–246.Google Scholar
  151. 151.
    Lopez-Leban, F., Kiran, M. D., Wolcott, R., & Balaban, N. (2010). Molecular mechanisms of RIP, an effective inhibitor of chronic infections. International Journal of Artificial Organs, 33(9), 582–589.Google Scholar
  152. 152.
    Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477–17500.Google Scholar
  153. 153.
    Norowski, P. A., Courtney, H. S., Babu, J., Haggard, W. O., & Bumgardner, J. D. (2011). Chitosan coatings deliver antimicrobials from titanium implants: A preliminary study. Implant Dentistry, 20(1), 56–67.Google Scholar
  154. 154.
    Chen, X. N., Gu, Y. X., Lee, J. H., Lee, W. Y., & Wang, H. J. (2012). Multifunctional surfaces with biomimetic nanofibres and drug-eluting micro-patterns for infection control and bone tissue formation. European Cells & Materials, 24, 237–248.Google Scholar
  155. 155.
    Renoud, P., Toury, B., Benayoun, S., Attik, G., & Grosgogeat, B. (2012). Functionalization of titanium with chitosan via silanation: Evaluation of biological and mechanical performances. PLoS ONE, 7(7), e39367.Google Scholar
  156. 156.
    Tan, H., Ma, R., Lin, C., Liu, Z., & Tang, T. (2013). Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics. International Journal of Molecular Sciences, 14(1), 1854–1869.Google Scholar
  157. 157.
    Yilmaz, C., Colak, M., Yilmaz, B. C., Ersoz, G., Kutateladze, M., & Gozlugol, M. (2013). Bacteriophage therapy in implant-related infections: An experimental study. Journal of Bone and Joint Surgery. American Volume, 95(2), 117–125.Google Scholar
  158. 158.
    Li, B., & McKeague, A. L. (2011). Emerging ideas: Interleukin-12 nanocoatings prevent open fracture-associated infections. Clinical Orthopaedics and Related Research, 469(11), 3262–3265.Google Scholar
  159. 159.
    Cheng, H., Li, Y., Huo, K., Gao, B., & Xiong, W. (2014). Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. Journal of Biomedical Materials Research Part A, 102(10), 3488–3499.Google Scholar
  160. 160.
    Gao, A., Hang, R., Huang, X., et al. (2014). The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 35(13), 4223–4235.Google Scholar
  161. 161.
    Mei, S., Wang, H., Wang, W., et al. (2014). Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, 35(14), 4255–4265.Google Scholar
  162. 162.
    Dong, W., Zhu, Y., Zhang, J., et al. (2013). Investigation on the antibacterial micro-porous titanium with silver nano-particles. Journal of Nanoscience and Nanotechnology, 13(10), 6782–6786.Google Scholar
  163. 163.
    Panacek, A., Balzerova, A., Prucek, R., et al. (2013). Preparation, characterization and antimicrobial efficiency of ag/PDDA-diatomite nanocomposite. Colloids and Surfaces B: Biointerfaces, 110, 191–198.Google Scholar
  164. 164.
    Knetsch, M. L. W., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers, 3, 340–366.Google Scholar
  165. 165.
    Kvitek, L., Panacek, A., Soukupova, J., et al. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C, 112, 5825–5834.Google Scholar
  166. 166.
    Koseki, H., Asahara, T., Shida, T., et al. (2013). Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins. International Journal of Nanomedicine, 8, 593–599.Google Scholar
  167. 167.
    Haenle, M., Fritsche, A., Zietz, C., et al. (2011). An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: In vitro effectiveness against MRSA and mechanical properties. Journal of Materials Science. Materials in Medicine, 22(2), 381–387.Google Scholar
  168. 168.
    Yue, C., Kuijer, R., Kaper, H. J., van der Mei, H. C., & Busscher, H. J. (2014). Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials, 35(9), 2580–2587.Google Scholar
  169. 169.
    Rodriguez-Valencia, C., Lopez-Alvarez, M., Cochon-Cores, B., Pereiro, I., Serra, J., & Gonzalez, P. (2013). Novel selenium-doped hydroxyapatite coatings for biomedical applications. Journal of Biomedical Materials Research Part A, 101(3), 853–861.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Charalambos P. Charalambous
    • 1
    • 2
    • 3
    Email author
  • Tariq A. Kwaees
    • 1
  • Paul M. Sutton
    • 4
  1. 1.Department of Trauma and OrthopaedicsBlackpool Victoria HospitalBlackpoolUK
  2. 2.School of Medicine and DentistryUniversity of Central LancashirePrestonUK
  3. 3.Faculty of Medical and HumanInstitute of Inflammation and Repair Sciences, University of ManchesterManchesterUK
  4. 4.Department of OrthopaedicsNorthern General HospitalSheffieldUK

Personalised recommendations