Advertisement

Design Characteristics of Inhaler Devices Used for Pulmonary Delivery of Medical Aerosols

  • Iftikhar Khan
  • Sakib Yousaf
  • Mohamed Albed Alhnan
  • Waqar Ahmed
  • Abdelbary ElhissiEmail author
  • Mark J. Jackson
Chapter

Abstract

For the treatment of respiratory diseases, it is vital to deliver therapeutic doses of drugs to specific regions in the tracheobronchial tree (TBT) of the lung with maximal efficiency and minimal wastage of medication. Since the nineteenth century, many devices have been designed to deliver drugs but the modern era started from 1956 with the introduction of the first metered dose inhaler. These devices can generate aerosols with uniform size distribution, resulting in high deposition in the deep lung which has high surface area (100 m2). Devices that have been commonly used for pulmonary drug delivery are pressurized metered dose inhalers (pMDIs), dry powder inhalers (DPIs) and nebulizers. This review introduces and evaluates the applications of devices used in inhalation therapy and the influence of design characteristics on the delivery of medical aerosols.

Keywords

Asthma Drug delivery Inhaler Nebulizer Pulmonary 

References

  1. 1.
    Arzhavitina, A., & Steckel, H. (2010). Surface active drugs significantly alter the drug output rate from medical nebulizers. International Journal of Pharmaceutics, 384, 128–136.CrossRefGoogle Scholar
  2. 2.
    Avvaru, B., Patil, M. N., Gogate, P. R., & Pandit, A. B. (2006). Ultrasonic atomization: Effect of liquid phase properties. Ultrasonics, 44, 146–158.CrossRefGoogle Scholar
  3. 3.
    Barry, P. W., & O’Callaghan, C. (1999). An in vitro analysis of the output of salbutamol from different nebulizers. European Respiratory Journal, 13, 1164–1169.CrossRefGoogle Scholar
  4. 4.
    Beck-Broichsitter, M., Kleimann, P., Schmehl, T., Betz, T., Bakowsky, U., Kissel, T., et al. (2012). Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. European Journal of Pharmaceutics and Biopharmaceutics, 82, 272–280.CrossRefGoogle Scholar
  5. 5.
    Bridges, P. A., & Taylor, K. M. G. (1998). Nebulisers for the generation of liposomal aerosols. International Journal of Pharmaceutics, 173, 117–125.CrossRefGoogle Scholar
  6. 6.
    Bridges, P. A. (2000). An investigation of some of the factors influencing the jet nebulisation of liposomes. International Journal of Pharmaceutics, 204, 69–79.CrossRefGoogle Scholar
  7. 7.
    Chougule, M. B., Padhi, B. K., Jinturkar, K. A., & Misra, A. (2007). Development of dry powder inhalers. Recent Patents on Drug Delivery & Formulation, 1, 11–21.CrossRefGoogle Scholar
  8. 8.
    Clark, A. R. (1995). Medical aerosol inhalers: Past, present, and future. Aerosol Science and Technology, 22, 374–391.CrossRefGoogle Scholar
  9. 9.
    Colacone, A., Wolkove, N., Stern, E., Afilalo, M., Rosenthal, T. M., & Kreisman, H. (1990). Continuous nebulization of albuterol (salbutamol) in acute asthma. Chest, 97, 693–697.CrossRefGoogle Scholar
  10. 10.
    Dennis, J. H., Stenton, S. C., Beach, J. R., Avery, A. J., Walters, E. H., & Hendrick, D. J. (1990). Jet and ultrasonic nebuliser output: Use of a new method for direct measurement of aerosol output. Thorax, 45, 728–732.CrossRefGoogle Scholar
  11. 11.
    Dhand, R. (2002). Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol. Respiratory Care, 47, 1406–1416 (discussion 1416–1418).Google Scholar
  12. 12.
    Dhand, R. (2003). New nebuliser technology—Aerosol generation by using a vibrating mesh or plate with multiple apertures. University of Missouri Hospital and Clinics, for Omeron Healthcare, Inc.Google Scholar
  13. 13.
    Dhand, R. (2008). Aerosol delivery during mechanical ventilation: From basic techniques to new devices journal of aerosol medicine and pulmonary. Drug Delivery, 21, 45–60.Google Scholar
  14. 14.
    Dolovich, M. (1999). New propellant-free technologies under investigation. Journal of Aerosol Medicine, 12(Suppl 1), S9–s17.CrossRefGoogle Scholar
  15. 15.
    Dolovich, M., & Dhand, R. (2011). Aerosol drug delivery: Developments in device design and clinical use? Authors’ reply. The Lancet, 378, 1032–1045.CrossRefGoogle Scholar
  16. 16.
    Dunbar, C. A., Watkins, A. P., & Miller, J. F. (1997). An experimental investigation of the spray issued from a pMDI using laser diagnostic techniques. Journal of Aerosol Medicine, 10, 351–368.CrossRefGoogle Scholar
  17. 17.
    Elhissi, A., & Taylor, K. M. G. (2005). Delivery of liposomes generated from pro liposomes using air-jet, ultrasonic and vibrating-mesh nebulisers. Journal of Drug Delivery Science and Technology, 15, 261–265.CrossRefGoogle Scholar
  18. 18.
    Elhissi, A., Hidayat, K., Phoenix, D. A., Mwesigwa, E., Crean, S., Ahmed, W., et al. (2013). Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology. International Journal of Pharmaceutics, 444, 193–199.CrossRefGoogle Scholar
  19. 19.
    Elhissi, A. M. A., & Ahmed, W. (2011). Chapter 1: Advances in design and technology of devices manufactured for drug delivery applications. In M. Jackson & J. P. Davim (Eds.), Medical device manufacturing. USA: Nova Publisher.Google Scholar
  20. 20.
    Elhissi, A. M. A., Faizi, M., Naji, W. F., Gill, H. S., & Taylor, K. M. G. (2007). Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. International Journal of Pharmaceutics, 334, 62–70.CrossRefGoogle Scholar
  21. 21.
    Farr, S. J., Kellaway, I. W., & Carman-Meakin, B. (1987). Assessing the potential of aerosol-generated liposomes from pressurised pack formulations. Journal of Controlled Release, 5, 119–127.CrossRefGoogle Scholar
  22. 22.
    Flament, M. P., Leterme, P., & Gayot, A. T. (2001). Study of the technological parameters of ultrasonic nebulisation. Drug Development and Industrial Phamacy, 27, 643–649.CrossRefGoogle Scholar
  23. 23.
    Ganderton, D. (1999). Targeted delivery of inhaled drugs: Current challenges and future goals. Journal of Aerosol Medicine, 12(Suppl 1), S3–S8.CrossRefGoogle Scholar
  24. 24.
    Ghazanfari, T., Elhissi, A. M., Ding, Z., & Taylor, K. M. (2007). The influence of fluid physicochemical properties on vibrating-mesh nebulization. International Journal of Pharmaceutics, 339, 103–111.CrossRefGoogle Scholar
  25. 25.
    Goldbach, P., Brochart, H., & Stamm, A. (1993). Spray-drying of liposomes for a pulmonary administration. II. Retention of encapsulated materials. Drug Development and Industrial Pharmacy, 19, 2623–2636.CrossRefGoogle Scholar
  26. 26.
    Grossman, J. (1994). The evolution of inhaler technology. Journal of Asthma, 31, 55–64.CrossRefGoogle Scholar
  27. 27.
    Hamilton, R. D., & Guz, A. (1991). Jet and ultrasonic nebuliser output: Use of a new method for direct measurement of aerosol output. Thorax, 46, 151–152.CrossRefGoogle Scholar
  28. 28.
    Hess, D., MacIntyre, N., & Mishoe, S. (2011). Respiratory care: Principles and practice. Burlington, MA.: Jones & Bartlett Learning.Google Scholar
  29. 29.
    Hess, D., Fisher, D., Williams, P., Pooler, S., & Kacmarek, R. M. (1996). Medication nebulizer performance. Effects of diluent volume, nebulizer flow, and nebulizer brand. Chest, 110, 498–505.CrossRefGoogle Scholar
  30. 30.
    Hess, R. D. (2000). Nebulizers: Principles and performance. Respiratory care, 45, 609–622.Google Scholar
  31. 31.
    Hugh, D. C. S. (2003). The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Advanced Drug Delivery Reviews, 55, 807–828.CrossRefGoogle Scholar
  32. 32.
    Juntunen-Backman, K., Kajosaari, M., Laurikainen, K., Malinen, A., Kaila, M., Mustala, L., et al. (2002). Comparison of easyhaler metered-dose, dry powder inhaler and a pressurised metered-dose inhaler plus spacer in the treatment of asthma in children. Clinical Drug Investigation, 22, 827–839.CrossRefGoogle Scholar
  33. 33.
    Kendrick, A. H., Smith, E. C., & Wilson, R. S. (1997). Selecting and using nebuliser equipment. Thorax, 52(Suppl 2), S92–S101.CrossRefGoogle Scholar
  34. 34.
    Khatri, L., Taylor, K. M., Craig, D. Q., & Palin, K. (2001). An assessment of jet and ultrasonic nebulisers for the delivery of lactate dehydrogenase solutions. International Journal of Pharmaceutics, 227, 121–131.CrossRefGoogle Scholar
  35. 35.
    Labiris, N. R., & Dolovich, M. B. (2003). Pulmonary drug delivery. Part II: The role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology, 56, 600–612.CrossRefGoogle Scholar
  36. 36.
    Leung, K. K. M., Bridges, P. A., & Taylor, K. M. G. (1996). The stability of liposomes to ultrasonic nebulisation. International Journal of Pharmaceutics, 145, 95–102.CrossRefGoogle Scholar
  37. 37.
    Lin, C.-Y., Meng, H.-C., & Fu, C. (2011). An ultrasonic aerosol therapy nebulizer using electroformed palladium–nickel alloy nozzle plates. Sensors and Actuators A: Physical, 169, 187–193.CrossRefGoogle Scholar
  38. 38.
    Máiz Carro, L., & Wagner, S. C. (2011). Beneficios de la terapia nebulizada: conceptos básicos. Archivos de BronconeumologíaSupplement, 47(Supplement 6), 2–7.CrossRefGoogle Scholar
  39. 39.
    McCallion, O. N. M., Taylor, K. M. G., Thomas, M., & Taylor, A. J. (1995). Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers. Pharmaceutical Research, 12, 1682–1688.CrossRefGoogle Scholar
  40. 40.
    McCallion, O. N. M., Taylor, K. M. G., Bridges, P. A., Thomas, M., & Taylor, A. J. (1996). Jet nebulisers for pulmonary drug delivery. International Journal of Pharmaceutics, 130, 1–11.CrossRefGoogle Scholar
  41. 41.
    Najlah, M., Vali, A., Taylor, M., Arafat, BT., Ahmed, W., Phoenix, DA., et al. (2013). A study of the effects of sodium halides on the performance of air-jet and vibrating-mesh nebulizers. International Journal of Pharmaceutics, 456, 520.CrossRefGoogle Scholar
  42. 42.
    Newman, S. P. (2005). Principles of metered-dose inhaler design. Respiratory Care, 50, 1177–1190.Google Scholar
  43. 43.
    Newman, S. P., & Clarke, S. W. (1983). Therapeutic aerosols 1-physical and practical considerations. Thorax, 38, 881–886.CrossRefGoogle Scholar
  44. 44.
    Newman, S. P., & Gee-Turner, A. (2005). The Omron microair vibrating mesh technology nebuliser, a 21st century approach to inhalation therapy. Journal of Applied Therapeutic Research, 5, 29–33.Google Scholar
  45. 45.
    Niven, R. W., & Brain, J. D. (1994). Some functional aspects of air-jet nebulizers. International Journal of Pharmaceutics, 104, 73–85.CrossRefGoogle Scholar
  46. 46.
    Niven, R. W., Speer, M., & Schreier, H. (1991). Nebulization of liposomes. II. The effects of size and modeling of solute release profiles. Pharmaceutical Research, 8, 217–221.CrossRefGoogle Scholar
  47. 47.
    O’Callaghan, C., & Barry, P. W. (1997). The science of nebulised drug delivery. Thorax, 52(Suppl 2), S31–S44.CrossRefGoogle Scholar
  48. 48.
    O’Riordan, T. G. (2002). Formulations and nebulizer performance. Respiratory Care, 47, 1305–1312 (discussion 1312-1313).Google Scholar
  49. 49.
    Oliveira, R. F., Teixeira, S., Silva, L. F., Teixeira, J. C., & Antunes, H. (2010). Study of a pressurized metered-dose inhaler spray parameters in fluent. London: World Congress on Engineering.Google Scholar
  50. 50.
    Pedersen, S. (1987). Inhaler use in children with asthma. Danish Medical Bulletin, 34, 234–249.Google Scholar
  51. 51.
    Pedersen, S. (1996). Inhalers and nebulizers: Which to choose and why. Respiratory Medicine, 90, 69–77.CrossRefGoogle Scholar
  52. 52.
    Pedersen, S., Frost, L., & Arnfred, T. (1986). Errors in inhalation technique and efficiency in inhaler use in asthmatic children. Allergy, 41, 118–124.CrossRefGoogle Scholar
  53. 53.
    Phipps, P. R., & Gonda, I. (1990). Droplets produced by medical nebulizers. Some factors affecting their size and solute concentration. CHEST Journal, 97, 1327–1332.CrossRefGoogle Scholar
  54. 54.
    Ramlal, S. K., Visser, F. J., Hop, W. C. J., Dekhuijzen, P. N. R., & Heijdra, Y. F. (2013). The effect of bronchodilators administered via aerochamber or a nebulizer on inspiratory lung function parameters. Respiratory Medicine, 107, 1393–1399.CrossRefGoogle Scholar
  55. 55.
    Rau, J. L. (2002). Design principles of liquid nebulization devices currently in use. Respiratory Care, 47, 1257–1275 (discussion 1275–1278).Google Scholar
  56. 56.
    Rubin, B. K., & Fink, J. B. (2005). Optimizing aerosol delivery by pressurized metered-dose inhalers. Respiratory Care, 50, 1191–1200.Google Scholar
  57. 57.
    Schreier, H., & Bouwstra, J. (1994). Liposomes and niosomes as topical drug carriers: Dermal and transdermal drug delivery. Journal of Controlled Release, 30, 1–15.CrossRefGoogle Scholar
  58. 58.
    Smye, S., & Jollie, M. (1992). A simple mathematical description of jet nebuliser performance. Journal of Aerosol Science, 01, 221–224.CrossRefGoogle Scholar
  59. 59.
    Smyth, H., Hickey, A. J., Brace, G., Barbour, T., Gallion, J., & Grove, J. (2006). Spray pattern analysis for metered dose inhalers I: Orifice size, particle size, and droplet motion correlations. Drug Development and Industrial Pharmacy, 32, 1033–1041.CrossRefGoogle Scholar
  60. 60.
    Steckel, H., & Eskandar, F. (2003). Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. European Journal of Pharmaceutical Sciences, 19, 443–455.CrossRefGoogle Scholar
  61. 61.
    Takanami, C., & Goto, Y. (1990). Physical properties of antibiotic aerosols produced by jet and ultrasonic nebulizers. Journal of Aerosol Medicine, 3, 45–52.CrossRefGoogle Scholar
  62. 62.
    Taylor, K. M. G., & Hoare, C. (1993). Ultrasonic nebulisation of pentamidine isethionate. International Journal of Pharmaceutics, 98, 45–49.CrossRefGoogle Scholar
  63. 63.
    Taylor, K. M. G., & McCallion, O. N. M. (1997). Ultrasonic nebulisers for pulmonary drug delivery. International Journal of Pharmaceutics, 153, 93–104.CrossRefGoogle Scholar
  64. 64.
    Taylor, K. M. G., & McCallion, O. N. M. (2002). Ultrasonic nebulizers. In J. Swarbrick & J. C. Boylan (Eds.), Encyclopaedia of pharmaceutical technology (pp. 2840–2847). New York: Marcel Dekker.Google Scholar
  65. 65.
    Taylor, K. M. G., Taylor, G., Kellaway, I. W., & Stevens, J. (1990). The stability of liposomes to nebulisation. International Journal of Pharmaceutics, 58, 57–61.CrossRefGoogle Scholar
  66. 66.
    Telko, M. J., & Hickey, A. J. (2005). Dry powder inhaler formulation. Respiratory Care, 50, 1209–1227.Google Scholar
  67. 67.
    Terzano, C. (2001). Pressurized metered dose inhalers and add-on devices. Pulmonary Pharmacology & Therapeutics, 14, 351–366.CrossRefGoogle Scholar
  68. 68.
    Vecellio, L., Abdelrahim, M. E., Montharu, J., Galle, J., Diot, P., & Dubus, J.-C. (2011). Disposable versus reusable jet nebulizers for cystic fibrosis treatment with tobramycin. Journal of Cystic Fibrosis, 10, 86–92.CrossRefGoogle Scholar
  69. 69.
    Vervaet, C., & Byron, P. R. (1999). Drug-surfactant-propellant interactions in HFA-formulations. International Journal of Pharmaceutics, 186, 13–30.CrossRefGoogle Scholar
  70. 70.
    Waldrep, J. C., & Dhand, R. (2008). Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Current Drug Delivery, 5, 114–119.CrossRefGoogle Scholar
  71. 71.
    Waldrep, J. C., Keyhani, K., Black, M., & Knight, V. (1994). Operating characteristics of 18 different continuous-flow jet nebulizers with beclomethasone dipropionate liposome aerosol. Chest, 105, 106–110.CrossRefGoogle Scholar
  72. 72.
    Yoshiyama, Y., Seki, K., Mino, K., Yazaki, T., Kanke, M., Arai, M., et al. (2003). Nebulization property and utility of a newly designed mesh nebulizer. Oto-Rhino-Laryngology Tokyo, 46, 41–44.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Iftikhar Khan
    • 1
  • Sakib Yousaf
    • 1
  • Mohamed Albed Alhnan
    • 1
  • Waqar Ahmed
    • 2
  • Abdelbary Elhissi
    • 3
    Email author
  • Mark J. Jackson
    • 4
  1. 1.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Pharmaceutical Sciences Section, College of PharmacyQatar UniversityDohaQatar
  4. 4.Kansas State UniversitySalinaUSA

Personalised recommendations