Advertisement

Nanocoatings for Medical Devices

  • Waqar AhmedEmail author
  • Mohammed AlHannan
  • Sakib Yusuf
  • Mark J. Jackson
Chapter

Abstract

Recent developments integrating nanotechnology with electronics and computing are producing a large number of medical devices for health care. In this chapter, we focus on the advances made in the use of coatings to enhance functionality of dental implants, stents, hip prosthesis, and miscellaneous devices. Despite numerous publications the potential for using coatings in the healthcare industry is enormous and yet relatively untapped.

References

  1. 1.
    America, G. (2014). G-Coat PlusTM. Available online at http://www.gcamerica.com/products/operatory/G-Coat_Plus/index.php. Accessed on February 20, 2014 (AD 1902).
  2. 2.
    Berglundh, T., Persson, L., & Klinge, B. (2002). A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. Journal of Clinical Periodontology, 29, 197–212.CrossRefGoogle Scholar
  3. 3.
    Blatz, M. B. (2002). Long-term clinical success of all-ceramic posterior restorations. Quintessence International, 33, 415–426.Google Scholar
  4. 4.
    Braic, V., Braic, M., Balaceanu, M., Vladescu, A., Zoita, C. N., Titorencu, I., et al. (2011). (Zr, Ti)CN coatings as potential candidates for biomedical applications. Surface and Coatings Technology, 206, 604–609.CrossRefGoogle Scholar
  5. 5.
    Calliess, T., Bartsch, I., Haupt, M., Reebmann, M., Schwarze, M., Stiesch, M., et al. (2016). In vivo comparative study of tissue reaction to bare and antimicrobial polymer coated transcutaneous implants. Materials Science and Engineering C, 61, 712–719.CrossRefGoogle Scholar
  6. 6.
    Chen, Q., Baino, F., Pugno, N. M., & Vitale-Brovarone, C. (2013). Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. Materials Science and Engineering C, 33, 1530–1538.CrossRefGoogle Scholar
  7. 7.
    Cheng, Z., Guo, C., Dong, W., He, F. M., Zhao, S. F., & Yang, G. L. (2012). Effect of thin nano-hydroxyapatite coating on implant osseointegration in ovariectomized rats. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 113, e48–e53.CrossRefGoogle Scholar
  8. 8.
    Choi, J. Y., Jung, U. W., Kim, C. S., Jung, S. M., Lee, I. S., & Choi, S. H. (2013). Influence of nanocoated calcium phosphate on two different types of implant surfaces in different bone environment: An animal study. Clinical Oral Implants Research, 24, 1018–1022.CrossRefGoogle Scholar
  9. 9.
    Chung, T. W., Wang, S. S., Wang, Y. Z., Hsieh, C. H., & Fu, E. (2009). Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly (epsilon-caprolactone) films is influenced by nano-roughness chitosan surfaces. Journal of Materials Science. Materials in Medicine, 20, 397–404.CrossRefGoogle Scholar
  10. 10.
    Cieślik, M., Kot, M., Reczyński, W., Engvall, K., Rakowski, W., & Kotarba, A. (2012). Parylene coatings on stainless steel 316L surface for medical applications—Mechanical and protective properties. Materials Science and Engineering C, 32, 31–35.CrossRefGoogle Scholar
  11. 11.
    Ciobanu, G., Ilisei, S., & Luca, C. (2014). Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold. Materials Science and Engineering C, 35, 36–42.CrossRefGoogle Scholar
  12. 12.
    Collares, F. M., Leitune, V. C., Rostirolla, F. V., Trommer, R. M., Bergmann, C. P., & Samuel, S. M. (2012). Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. International Endodontic Journal, 45, 63–67.CrossRefGoogle Scholar
  13. 13.
    Council, N. S. A. T. (2014). National nanotechnology initiative strategic plan. Available online at http://www.nano.gov/sites/default/files/pub_resource/2014_nni_strategic_plan.pdf. Accessed on January 11, 2016.
  14. 14.
    Council, T. E. P. A. O. T. (2007). Directive 2007/47/EC. Official Journal of the European Union.Google Scholar
  15. 15.
    Depprich, R. A., Handschel, J. G., Meyer, U., & Meissner, G. (2008). Comparison of prevalence of microorganisms on titanium and silicone/polymethyl methacrylate obturators used for rehabilitation of maxillary defects. The Journal of Prosthetic Dentistry, 99, 400–405.CrossRefGoogle Scholar
  16. 16.
    Engel, E., Michiardi, A., Navarro, M., Lacroix, D., & Planell, J. A. (2008). Nanotechnology in regenerative medicine: The materials side. Trends in Biotechnology, 26, 39–47.CrossRefGoogle Scholar
  17. 17.
    Fordham, W. R., Redmond, S., Westerland, A., Cortes, E. G., Walker, C., Gallagher, C., et al. (2014). Silver as a bactericidal coating for biomedical implants. Surface and Coatings Technology, 253, 52–57.CrossRefGoogle Scholar
  18. 18.
    Gallino, E., Massey, S., Tatoulian, M., & Mantovani, D. (2010). Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surface and Coatings Technology, 205, 2461–2468.CrossRefGoogle Scholar
  19. 19.
    Gambardella, A., Bianchi, M., Kaciulis, S., Mezzi, A., Brucale, M., Cavallini, M., et al. (2016). Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation. Materials Science and Engineering: C.Google Scholar
  20. 20.
    Ganly, S., Hynes, S. O., Sharif, F., Aied, A., Barron, V., McCullagh, K., et al. (2013). Liposomal surface coatings of metal stents for efficient non-viral gene delivery to the injured vasculature. Journal of Controlled Release, 167, 109–119.CrossRefGoogle Scholar
  21. 21.
    Garner, S. J., Nobbs, A. H., McNally, L. M., & Barbour, M. E. (2015). An antifungal coating for dental silicones composed of chlorhexidine nanoparticles. Journal of Dentistry, 43, 362–372.CrossRefGoogle Scholar
  22. 22.
    Gazia, R., Mandracci, P., Mussano, F., & Carossa, S. (2011). AlNx and a-SiOx coatings with corrosion resistance properties for dental implants. Surface and Coatings Technology, 206, 1109–1115.CrossRefGoogle Scholar
  23. 23.
    Glass, R. T., Bullard, J. W., Hadley, C. S., Mix, E. W., & Conrad, R. S. (2001). Partial spectrum of microorganisms found in dentures and possible disease implications. Journal of the American Osteopathic Association, 101, 92–94.Google Scholar
  24. 24.
    Gurzawska, K., Svava, R., Syberg, S., Yihua, Y., Haugshoj, K. B., Damager, I., et al. (2012). Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response. Journal of Biomedical Materials Research Part A, 100, 654–664.CrossRefGoogle Scholar
  25. 25.
    Herting, G., Odnevall Wallinder, I., & Leygraf, C. (2006). Factors that influence the release of metals from stainless steels exposed to physiological media. Corrosion Science, 48, 2120–2132.CrossRefGoogle Scholar
  26. 26.
    Hirata, E., Akasaka, T., Uo, M., Takita, H., Watari, F., & Yokoyama, T. (2012). Carbon nanotube-coating accelerated cell adhesion and proliferation on poly (L-lactide). Applied Surface Science, 262, 24–27.CrossRefGoogle Scholar
  27. 27.
    Huang, G., Chen, Y., & Zhang, J. (2016). Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination. Applied Surface Science, Part A, 360, 383–388.CrossRefGoogle Scholar
  28. 28.
    Ingo, G. M., Guida, G., Angelini, E., Di, C. G., Mezzi, A., & Padeletti, G. (2013). Ancient mercury-based plating methods: Combined use of surface analytical techniques for the study of manufacturing process and degradation phenomena. Accounts of chemical research, 46.Google Scholar
  29. 29.
    Jevnikar, P., Golobic, M., Kocjan, A., & Kosmac, T. (2012). The effect of nano-structured alumina coating on the bond strength of resin-modified glass ionomer cements to zirconia ceramics. Journal of the European Ceramic Society, 32, 2641–2645.CrossRefGoogle Scholar
  30. 30.
    Jia, Z., Xiu, P., Li, M., Xu, X., Shi, Y., Cheng, Y., et al. (2016). Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials, 75, 203–222.CrossRefGoogle Scholar
  31. 31.
    Jiang, B., & Li, B. (2009). Polypeptide nanocoatings for preventing dental and orthopaedic device-associated infection: pH-induced antibiotic capture, release, and antibiotic efficacy. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 88, 332–338.CrossRefGoogle Scholar
  32. 32.
    Karagkiozaki, V., Karagiannidis, P. G., Gioti, M., Kavatzikidou, P., Georgiou, D., Georgaraki, E., et al. (2013). Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochimica et Biophysica Acta (BBA)-General Subjects.CrossRefGoogle Scholar
  33. 33.
    Khan, S. N., Ramachandran, M., Kumar, S. S., Krishan, I., & Undaram, R. (2012). Osseointegration and more—A review of literature. Indian Journal of Dentistry, 3, 72–76.CrossRefGoogle Scholar
  34. 34.
    Khan, W. S., & Asmatulu, R. (2013). Chapter 1—Nanotechnology emerging trends, markets, and concerns. In R. Asmatulu (Ed.), Nanotechnology safety. Amsterdam: Elsevier.Google Scholar
  35. 35.
    Khoo, X., O’Toole, G. A., Nair, S. A., Snyder, B. D., Kenan, D. J., & Grinstaff, M. W. (2010). Staphylococcus aureus resistance on titanium coated with multivalent PEGylated-peptides. Biomaterials, 31, 9285–9292.CrossRefGoogle Scholar
  36. 36.
    Li, X., Liu, X., Huang, J., Fan, Y., & Cui, F. (2011). Biomedical of investigation of CNT based coatings. Surface and Coatings Technology, 206, 759–766.CrossRefGoogle Scholar
  37. 37.
    Lin, J., Fei, T., & Zhang, J. (2013). Highly transparent superhydrophobic organic-inorganic nanocoating from the aggregation of silica nanoparticles. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 421, 51–62.CrossRefGoogle Scholar
  38. 38.
    Lin, R., Mao, X., Yu, Q., & Tan, B. (2007). Preparation of bioactive nano-hydroxyapatite coating for artificial cornea. In Current Applied Physics, 3rd China–Korea Symposium on Biomaterials and Nano-Bio Technology. Elsevier.Google Scholar
  39. 39.
    Mavrogenis, A. F., Dimitriou, R., Parvizi, J., & Babis, G. C. (2009). Biology of implant osseointegration. Journal of Musculoskeletal and Neuronal Interactions, 9, 61–71.Google Scholar
  40. 40.
    McConnell, E. L., Fadda, H. M., & Basit, A. W. (2008). Gut instincts: Explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, 364, 213–226.CrossRefGoogle Scholar
  41. 41.
    Mota, E. G., & Subramani, K. (2012). Chapter 4—Nanotechnology in operative dentistry: A perspective approach of history, mechanical behavior, and clinical application. In K. Subramani & W. Ahmed (Eds.), Emerging nanotechnologies in dentistry micro and nano technologies. Boston: William Andrew Publishing.CrossRefGoogle Scholar
  42. 42.
    Nakamura, S., Colombo, A., Gaglione, A., Almagor, Y., Goldberg, S. L., Maiello, L., et al. (1994). Intracoronary ultrasound observations during stent implantation. Circulation, 89, 2026–2034.CrossRefGoogle Scholar
  43. 43.
    Nichols, H. L., Zhang, N., Zhang, J., Shi, D., Bhaduri, S., & Wen, X. (2007). Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Journal of Biomedical Materials Research Part A, 82, 373–382.CrossRefGoogle Scholar
  44. 44.
    Pendegrass, C. J., Gordon, D., Middleton, C. A., Sun, S. N., & Blunn, G. W. (2008). Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy. Journal of Bone and Joint Surgery. British Volume, 90, 114–121.CrossRefGoogle Scholar
  45. 45.
    Popa, A. C., Stan, G. E., Enculescu, M., Tanase, C., Tulyaganov, D. U., & Ferreira, J. M. F. (2015). Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering. Journal of the Mechanical Behavior of Biomedical Materials, 51, 313–327.CrossRefGoogle Scholar
  46. 46.
    Pozuelo, J., Compañ, V., González-Méijome, J. M., González, M., & Mollá, S. (2014). Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. Journal of Membrane Science, 452, 62–72.CrossRefGoogle Scholar
  47. 47.
    Ramirez, G., Rodil, S. E., Arzate, H., Muhl, S., & Olaya, J. J. (2010). Niobium based coatings for dental implants. Applied Surface Science, 257, 2555–2559.CrossRefGoogle Scholar
  48. 48.
    Ranjbar, Z., & Rastegar, S. (2010). Nano mechanical properties of an automotive clear-coats containing nano silica particles with different surface chemistries. Progress in Organic Coatings, 72, 40–43.CrossRefGoogle Scholar
  49. 49.
    Redlich, M., & Tenne, R. (2013). Chapter 13—Nanoparticle coating of orthodontic appliances for friction reduction. In K. Subramani, W. Ahmed & J. K. Hartsfield (Eds.), Nanobiomaterials in clinical dentistry. William Andrew Publishing.Google Scholar
  50. 50.
    Reinhardt, B., & Beikler, T. (2014). Chapter 4—Dental implants. In J. Z. Shen & T. KOSMA-Ì (Eds.) Advanced ceramics for dentistry. Oxford: Butterworth-Heinemann.CrossRefGoogle Scholar
  51. 51.
    Richardson, R. R., Miller, J. A., & Reichert, W. M. (1993). Polyimides as biomaterials: Preliminary biocompatibility testing. Biomaterials, 14, 627–635.CrossRefGoogle Scholar
  52. 52.
    Schatz, R. A., Baim, D. S., Leon, M., Ellis, S. G., Goldberg, S., Hirshfeld, J. W., et al. (1991). Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation, 83, 148–161.CrossRefGoogle Scholar
  53. 53.
    Schatz, R. A., Palmaz, J. C., Tio, F. O., Garcia, F., Garcia, O., & Reuter, S. R. (1987). Balloon-expandable intracoronary stents in the adult dog. Circulation, 76, 450–457.CrossRefGoogle Scholar
  54. 54.
    Shen, W., Cai, K., Yang, Z., Yan, Y., Yang, W., & Liu, P. (2012). Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating. Colloids and Surfaces B: Biointerfaces, 94, 347–353.CrossRefGoogle Scholar
  55. 55.
    Siegel, J., Polívková, M., Staszek, M., Kolářová, K., Rimpelová, S., & Švorčík, V. (2015). Nanostructured silver coatings on polyimide and their antibacterial response. Materials Letters, 145, 87–90.CrossRefGoogle Scholar
  56. 56.
    Siepmann, F., Wahle, C., Leclercq, B., Carlin, B., & Siepmann, J. (2008). pH-sensitive film coatings: towards a better understanding and facilitated optimization. European Journal of Pharmaceutics and Biopharmaceutics, 68, 2–10.CrossRefGoogle Scholar
  57. 57.
    Simonis, P., Dufour, T., & Tenenbaum, H. (2010). Long-term implant survival and success: a 10–16-year follow-up of non-submerged dental implants. Clinical Oral Implants Research, 21, 772–777.CrossRefGoogle Scholar
  58. 58.
    Subramani, K., & Ahmed, W. (2011). Nanotechnology and the Future of Dentistry. In Emerging nanotechnolgies in dentistry. Elsevier.Google Scholar
  59. 59.
    Taheri, S., Cavallaro, A., Christo, S. N., Smith, L. E., Majewski, P., & Barton, M. (2014). Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials, 35, 4601–4609.CrossRefGoogle Scholar
  60. 60.
    Tan, A., Alavijeh, M. S., & Seifalian, A. M. (2012). Next generation stent coatings: convergence of biotechnology and nanotechnology. Trends Biotechnology, 30, 406–409.CrossRefGoogle Scholar
  61. 61.
    Tang, C. J., Wang, G. X., Shen, Y., Wan, L. J., Xiao, Zhang, Q., et al. (2009). A Study on surface endothelialization of plasma coated intravascular stents. Surface and Coatings Technology, 204, 1487–1492.CrossRefGoogle Scholar
  62. 62.
    Taylor, S. R., & Sieradzki, K. (2003). The development of a multi-functional aerospace coating: considerations in the use of nano-dimensioned materials. Progress in Organic Coatings, 47, 173.CrossRefGoogle Scholar
  63. 63.
    Thalhammer, A., Edgington, R. J., Cingolani, L. A., Schoepfer, R., & Jackman, R. B. (2010). The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials, 31, 2097–2104.CrossRefGoogle Scholar
  64. 64.
    Tiwari, S., & Nandlal, B. (2013). Effect of nano-filled surface coating agent on fluoride release from conventional glass ionomer cement: an in vitro trial. Journal of Indian Society of Pedodontics and Preventive Dentistry, 31, 91–95.CrossRefGoogle Scholar
  65. 65.
    Trading, O. O. F. (2012). Dentistry an OFT market study.Google Scholar
  66. 66.
    USA, S. (2015). The Medical Device Industry in the United States. Available online at http://selectusa.commerce.gov/industry-snapshots/medical-device-industry-united-states.html. Accessed on January 08, 2013 (2016).
  67. 67.
    Verne, E., Vitale-Brovarone, C., Robiglio, L., & Baino, F. (2008). Single-piece ceramic prosthesis elements.Google Scholar
  68. 68.
    Vitale-Brovarone, C., Baino, F., Tallia, F., Gervasio, C., & Verné, E. (2012). Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. Journal of Materials Science Materials in Medicine, 23, 2369–2380.CrossRefGoogle Scholar
  69. 69.
    Walkenhorst, J. (2014). BioNanoImplant: Optimized Osseointegration with bio-nanocoating. Available online at http://www.technologieallianz.de/webtemp/1902_TO_BioNanoImplec39c602.pdf
  70. 70.
    Wang, D., & Bierwagen, G. P. (2009). Sol-Gel coatings on metals for corrosion protection. Progress in Organic Coatings, 64, 327–338.CrossRefGoogle Scholar
  71. 71.
    Wennerberg, A., Jimbo, R., Allard, S., Skarnemark, G., & Andersson, M. (2011). In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. International Journal of Oral and Maxillofacial Implants, 26, 1161–1166.Google Scholar
  72. 72.
    Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941–2953.CrossRefGoogle Scholar
  73. 73.
    Zhang, S., Kocjan, A., Lehmann, F., Kosmac, T., & Kern, M. (2010). Influence of contamination on resin bond strength to nano-structured alumina-coated zirconia ceramic. European Journal of Oral Sciences, 118, 396–403.CrossRefGoogle Scholar
  74. 74.
    Zhao, L., Wang, H., Huo, K., Cui, L., Zhang, W., Ni, H., et al. (2011). Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, 32, 5706–5716.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Waqar Ahmed
    • 1
    Email author
  • Mohammed AlHannan
    • 2
  • Sakib Yusuf
    • 2
  • Mark J. Jackson
    • 3
  1. 1.School of MedicineUniversity of Central LancashirePrestonUK
  2. 2.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversitySalinaUSA

Personalised recommendations