Titanium and Titanium Alloy Applications in Medicine

  • M. J. JacksonEmail author
  • J. Kopac
  • M. Balazic
  • D. Bombac
  • M. Brojan
  • F. Kosel


Titanium is a transition metal. It is present in several minerals including rutile and ilmenite, which are well dispersed over the Earth’s crust. Even though titanium is as strong as some steels, its density is only half of that of steel. Titanium is broadly used in a number of fields, including aerospace, power generation, automotive, chemical and petrochemical, sporting goods, dental and medical industries. The large variety of applications is due to its desirable properties, mainly the relative high strength combined with low density and enhanced corrosion resistance. This chapter discusses the applications of titanium and its alloys in the medical field.


Titanium Alloys Medicine Materials Applications Machining 



The authors thank Springer and Wiley publishers for allowing the authors permission to reprint and update this chapter that was originally published in, ‘Surface Engineered Surgical Tools and Medical Devices,’ originally published by Springer in 2007 (ISBN 978-0387-27026-5). The authors also wish to thank Springer for allowing the authors to update the chapter with material that was published in ‘Machining with Nanomaterials’ also published by Springer. Reprinted with kind permission from Springer Science + Business Media B.V and Wiley Publishers.


  1. 1.
    Sibum, H. (2003). Titanium and titanium alloys—from raw material to semi-finished products. Advanced Engineering Materials, 5(6), 393.Google Scholar
  2. 2.
    Wang, K. (1996). The use of titanium for medical applications in the USA. Materials Science and Engineering A, 213, 134.Google Scholar
  3. 3.
    Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C, 26, 1269.Google Scholar
  4. 4.
    Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions, 33A, 477.Google Scholar
  5. 5.
    Lütjering, G., & Williams, J. C. (2003). Titanium. Berlin: Springer-Verlag.Google Scholar
  6. 6.
    Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19, 1621.Google Scholar
  7. 7.
    Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39, 133.Google Scholar
  8. 8.
    Disegi, J. A. (2000). Titanium alloys for fracture fixation implants, Injury. International Journal of the Care of the Injured, 31 (200) S-D14.Google Scholar
  9. 9.
    He, G., & Hagiwara, M. (2006). Ti alloy design strategy for biomedical applications. Materials Science and Engineering C, 26, 14.Google Scholar
  10. 10.
    Bannon, B. P., & Mild, E. E. (1983). Titanium alloys for biomaterial application: An overview, titanium alloys in surgical implants. In H. A. Luckey & F. Kubli, Jr (Eds.), American Society for Testing and materials (pp. 7–15). Pennsylvania: ASTM STP 796.Google Scholar
  11. 11.
    Oliveira, V., Chaves, R. R., Bertazzoli, R., & Caram, R. (1998). Preparation and characterization of Ti-Al-Nb orthopedic implants. Brazilian Journal of Chemical Engineering, 17, 326.Google Scholar
  12. 12.
    Boyer, R. R. (1996). Ana overview on the use of titanium in the aerospace industry. Materials Science and Engineering A, 213, 103.Google Scholar
  13. 13.
    Ferrero, J. G. (2005). Candidate materials for high-strength fastener applications in both the aerospace and automotive industries. Journal of Materials Engineering and Performance, 14, 691.Google Scholar
  14. 14.
    Semlitsch, M., Staub, F., & Weber, H. (1985). Titanium-aluminum-niobium alloy, development for biocompatible, high-strength surgical implants. Biomedizinische Technik, 30, 334.Google Scholar
  15. 15.
    Vail, T. P., Glisson, R. R., Koukoubis, T. D., & Guilak, F. (1998). The effect of hip stem material modulus on surface strain in human femora. Journal of Biomechanics, 31, 619.Google Scholar
  16. 16.
    Niinomi, M., Akahori, T., Takeuchi, T., Katsura, S., Fukui, H., & Toda, H. (2005). Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Materials Science and Engineering C, 25, 417.Google Scholar
  17. 17.
    Kikuchi, M., Takahashi, M., & Okuno, O. (2006). Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys. Dental Materials, 22, 641.Google Scholar
  18. 18.
    Kim, H. S., Kim, W.-Y., & Lim, S.-H. (2006). Microstructure and elastic modulus of Ti-Nb-Si ternary alloys for biomedical applications. Scripta Materialia, 54, 887–891.Google Scholar
  19. 19.
    Gross, S., & Abel, E. W. (2001). A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics, 34, 995.Google Scholar
  20. 20.
    Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., & Yang, R. (2003). Aging response of the Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr. Metallurgical and Materials Transactions, 34A, 1007–1012.Google Scholar
  21. 21.
    Hao, Y. L., Niinomi, M., Kuroda, D., Fukunaga, K., Zhou, Y. L., Yang, R., et al. (2002). Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metallurgical and Materials Transactions, 33A, 3137–3144.Google Scholar
  22. 22.
    Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., & Toda, H. (2005). Mechanical properties and microstructures of low cost β titanium alloys for healthcare applications. Materials Science and Engineering C, 25, 304.Google Scholar
  23. 23.
    Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., & Toda, H. (2005). Relationship between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr. Materials Science and Engineering C, 25, 363.Google Scholar
  24. 24.
    Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y., & Yashiro, T. (1998). Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A, 243, 244.Google Scholar
  25. 25.
    Peters, M., Hemptenmacher, H., Kumpfert, J., & Leyens, C. (2003). In C. Leyens & M. Peters (Eds.), Titanium and Titanium Alloys (pp. 1–57). New York: Wiley-VCH.Google Scholar
  26. 26.
    Ari-Gur, P., & Semiatin, S. L. (1998). Evolution of microstructure, macrotexture and microtexture during hot rolling og Ti-6Al-4V. Materials Science and Engineering A, 257, 118.Google Scholar
  27. 27.
    Lütjering, G. (1999). Property optimization through microstructural control in titanium and aluminum alloys. Materials Science and Engineering A, 263, 117.Google Scholar
  28. 28.
    Prasad, Y. V. R. K., & Seshacharyulu, T. (1998). Processing maps for hot working of titanium alloys. Materials Science and Engineering A, 243, 82.Google Scholar
  29. 29.
    Freese, H. L., Volas, M. G., & Wood, J. R. in: D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 25–51). New York: Springer.Google Scholar
  30. 30.
    Froes, F. H., & Bomberger, H. B. (1985). The beta titanium alloys. Journal of Metals, 37, 28.Google Scholar
  31. 31.
    Karasevskaya, O. P., Ivasishin, O. M., Semiatin, S. L., & Matviychuk, Y. V. (2003). Deformation behavior of beta-titanium alloys. Materials Science and Engineering A, 354, 121.Google Scholar
  32. 32.
    Lin, D. J., Chern, J. H., & Ju, C. P. (2002). Effect of omega phase on deformation behavior of Ti-7.5Mo-xFe alloys. Materials Chemistry and Physics, 76, 191.Google Scholar
  33. 33.
    Moffat, D. L., & Larbalestier, D. C. (1988). The competition between the alpha and omega phases in aged Ti-Nb alloys. Metallurgical Transactions, 19A, 1687.Google Scholar
  34. 34.
    Flower, H. M., Henry, S. D., & West, D. R. F. (1974). The βα ⇆ αβ transformation in dilute Ti-Mo alloys. Journal of Materials Science, 9, 57.Google Scholar
  35. 35.
    Tang, X., Ahmed, T., & Rack, H. J. (2000). Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. Journal of Materials Science, 35, 1805.Google Scholar
  36. 36.
    Dobromyslov, A. V., & Elkin, V. A. (2003). Martensitic transformation and metastable b-phase in binary titanium alloys with d-metals of 4–6 periods. Materials Science and Engineering A, 354, 121.Google Scholar
  37. 37.
    Dobromyslov, A. V., & Elkin, V. A. (2006). The orthorhombic α″-phase in binary titanium base alloys with d-metals of V–VIII groups. Materials Science and Engineering A, 438, 324–326 (in press).Google Scholar
  38. 38.
    Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 243, 231.Google Scholar
  39. 39.
    Brunski, J. B. (2004). In B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials science—an introduction to materials in medicine (pp. 137–153). San Diego: Elsevier Academic Press.Google Scholar
  40. 40.
    Wataria, F., Yokoyamaa, A., Omorib, M., Hiraic, T., Kondoa, H., Uoa, M., & Kawasakia, T. (2004). Biocompatibility of materials and development to functionally graded implant for bio-medical application. Composites Science and Technology, 64, 893–908.Google Scholar
  41. 41.
    Black, J. (1992). Biological performance of materials (2nd ed.). New York: M. Dekker Inc.Google Scholar
  42. 42.
    Park, J. B., & Kim, J. B. (2000). Metallic biomaterials, chapter 37. In J. D. Bronzino & B. Raton (eds.), The biomedical engineering handbook, (2nd ed.). Boca Raton: CRC Press LLC.Google Scholar
  43. 43.
    Feighan, J. E., Goldberg, V. M., Davy, D., Parr, J. A., & Stevenson, S. (1995). The influence of surfaceblasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. The Journal of Bone & Joint Surgery. American Volume, 77A, 1380–1395.Google Scholar
  44. 44.
    Tengvall, P., & Lundstrom, I. (1992). Physico-chemical considerations of titanium as a biomaterial. Clinical Materials, 9, 115–134.Google Scholar
  45. 45.
    Henrich, V. E., & Cox, P. A. (1994). The surface science of metal oxides. Cambridge: Cambridge University Press.Google Scholar
  46. 46.
    Thull, R., & Grant, D. (2001). Physical and chemical vapor deposition and plasma-assisted techniques for coating titanium. In D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 284–335). Berlin Heidelberg: Springer-Verlang.Google Scholar
  47. 47.
    Klocke, F. (2001). Manufacturing technology I. Aachen: WZL-RWTH.Google Scholar
  48. 48.
    Jackson, M. J., & Morrell, J. S. (Eds.). (2015). Machining with Nanomaterials (2nd ed.). New York and Heidelberg: Springer.Google Scholar
  49. 49.
    Donachie, M. (2000). Titanium—a technical guide (2nd ed.). Materials Park, OH: ASM International.Google Scholar
  50. 50.
    Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2009). A comparative study of the tool-chip contact length in turning of two engineering alloys for a wide range of cutting speeds. International Journal of Advanced Manufacturing Technology, 42, 30–40.Google Scholar
  51. 51.
    Sun, J., & Guo, Y. B. (2008). A new multi view approach to characterize 3D chip morphology and properties in end milling titanium Ti6Al4V. International Journal of Machine Tools and Manufacture, 48, 1486–1494.Google Scholar
  52. 52.
    Cotterell, M., & Byrne, G. (2008). Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP Annals - Manufacturing Technology, 57, 93–96.Google Scholar
  53. 53.
    Barry, J., Byrne, G., & Lennon, D. (2000). Observations on chip formation and acoustic emission in machining. International Journal of Machine Tools and Manufacture, 41, 1055–1070.Google Scholar
  54. 54.
    Fang, N. (2003). Slip-line modeling of machining with a rounded-edge tool—Part II: Analysisof the size efect and the shear strain-rate. Journal of the Mechanics and Physics of Solids, 51, 43–762.Google Scholar
  55. 55.
    Komanduri, R. (1982). Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear, 76, 15–34.Google Scholar
  56. 56.
    Abdelmoneim, M. E., & Scrutton, R. F. (1973). Post-machining plastic recovery and the law of abrasive wear. Wear, 24, 1–13.Google Scholar
  57. 57.
    Komanduri, R. (1971). Aspects of machining with negative rake tools simulating grinding. International Journal of Design and Research MTDR, 11, 223–233.Google Scholar
  58. 58.
    Rubenstein, C., Groszman, F. K., & Koenigsberger, F. (1967). Force measurements during cutting tests with single point tools simulating action of single abrasive grit. Paper presented at the International Industrial Diamond Conference.Google Scholar
  59. 59.
    Puerta Velasquez, J. D., Bolle, B., Chevrier, P., Geandier, G., & Tidu, A. (2007). Metallurgical study on chips obtained by high speed machining of a Ti-6 wt.%Al-4 wt.%V alloy. Materials Science and Engineering A, 452–453, 469–474.Google Scholar
  60. 60.
    Vyas, A., & Shaw, M. C. (1999). Mechanics of Saw-Tooth Chip Formation in Metal Cutting. Journal of Manufacturing Science and Engineering, 121, 163–172.Google Scholar
  61. 61.
    Morshed, M. M., McNamara, B. P., Cameron, D. C., & Hashmi, M. S. J. (2003). Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. Journal of Materials Processing Technology, 143, 922–926.Google Scholar
  62. 62.
    Hench, L. L., Splittr, R. J., Allen, W. C., & Greenlec, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 2, 117–141.Google Scholar
  63. 63.
    de Groot, K., Klein, C. P. A. T., Wolke, J. G. C., & de Blieck-Hogervorst, J. M. A. (1990). Plasma-sprayed coatings of calcium phosphate, CRC handbook of bioactive ceramics (Vol. 2, pp. 133–142). Boston: CRC Press.Google Scholar
  64. 64.
    Hulth, A. (1989). Current concepts of fracture healing. Clinical Orthopaedics and Related Research, 249–265.Google Scholar
  65. 65.
    Hutzschenreuter, P., & Brümmer, H. (1980). Screw design and stability. In H. Uhthoff (Ed.), Current concepts of Internal Fixation (pp. 244–250). Berlin: Springer-Verlag.Google Scholar
  66. 66.
    Cochran, G. V. B. (1982). Biomechanics of orthopaedic structures. In Primer in orthopaedic biomechanics (pp. 143–215). New York: Churchill Livingstone.Google Scholar
  67. 67.
    Sarmiento, A., Ebramzadeh, E., & Gogan, W. J. (1990). Cup containment and orientation in cemented total hip arthroplasties. Journal of Bone & Joint Surgery, 72B(6), 996.Google Scholar
  68. 68.
    Burstein, A. H., & Wright, T. H. (1993). Biomechanics. In J. Insall, R Windsor & W. Scott (Eds.), Surgery of the knee (2nd ed., Vol. 7) (pp. 43–62). New York: Churchill Livingstone.Google Scholar
  69. 69.
    Perren, M. S., Pohler, O. E. M., & Schneider, E. (2001). Titanium as implant material for osteosynthesis applications. In D. M. Brunette, P. Tengvall, M. Textor & P. Thomsen (Eds.), Titanium in medicine (pp. 772–823). Berlin Heidelberg: Springer-Verlang.Google Scholar
  70. 70.
    Olander, A. (1932). An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54, 3819–3833.Google Scholar
  71. 71.
    Greninger, A. B., & Mooradian, V. G. (1938). Strain transformation in metastable beta copper-zinc and beta copper-tin alloys. AIME, 128, 337–368.Google Scholar
  72. 72.
    Chang, L. C., & Read, T. A. (1951). Plastic deformation and diffusionless phase changes in metals-the gold-cadmium beta phase. Transaction of the American Institute of Mining and Metallurgical Engineers, 191(1), 47–52.Google Scholar
  73. 73.
    Buehler, W. J., & Wang, F. E. (1967). A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Journal of Ocean Engineering, 1, 105–108.Google Scholar
  74. 74.
    Wayman, C. M. (1964). Introduction to the crystallography of martensitic transformations. UK: The Macmillan Company.Google Scholar
  75. 75.
    Otsuka, K., & Wayman, C. M. (1998). Shape memory materials. Cambridge: Cambridge University Press.Google Scholar
  76. 76.
    Wechsler, M. S., Liberman, D. S., & Read, T. A. (1953). On the theory of the formation of martensite. Transaction of the AIME, 197, 1503–1515.Google Scholar
  77. 77.
    Bowles, J. S., & Mackenzie, J. K. (1954). The crystallography of martensite transformations I. Acta Metallurgica, 2, 129–137.Google Scholar
  78. 78.
    Saburi, T., & Wayman, C. M. (1979). Crystallographic similarities in shape memory martensites. Acta Metallurgica, 27(6), 979–995.Google Scholar
  79. 79.
    Adachi, K., Perkins, J., & Wayman, C. M. (1986). Type II twins in self-accommodating martensite plate variants in a Cu-Zn-Al shape memory alloy. Acta Metallurgica, 34(12), 2471–2485.Google Scholar
  80. 80.
    James, R. D., & Hane, K. F. (2000). Martensitic transformations and shape-memory materials. Acta Materialia, 48(1), 197–222.Google Scholar
  81. 81.
    Krishnan, Madangopal. (1998). The self accommodating martensitic microstructure of Ni-Ti shape memory alloys. Acta Materialia, 46(4), 1439–1457.Google Scholar
  82. 82.
    Inamura, T., Kinoshita, Y., Kim, J. I., Kim, H. Y., Hosoda, H., Wakashima, K., et al. (2006). Effect of {0 0 1} < 1 1 0 > texture on superelastic strain of Ti-Nb-Al biomedical shape memory alloys. Materials Science and Engineering A, 438, 865–869 (In Press).Google Scholar
  83. 83.
    Bhattacharya, K. (2003). Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect, Oxford series on materials modelling (1st ed.). Oxford: Oxford University Press.zbMATHGoogle Scholar
  84. 84.
    Stalmans, R., Delaey, L., & Van Humbeeck, J. (1997). Generation of recovery stresses: Thermodynamic modelling and experimental verification. Le Journal de Physique IV, 7, 47–52.Google Scholar
  85. 85.
    Barsch, G. R., & Krumhansl, J. A. (1984). Twin boundaries in ferroelastic media without interface dislocations. Physical Review Letters, 53(11), 1069–1072.Google Scholar
  86. 86.
    Falk, F. (1980). Model free energy, mechanics, and thermodynamics of shape memory alloys. Acta Metallurgica, 28, 1773–1780.Google Scholar
  87. 87.
    Maugin, G. A., & Cadet, S. (1991). Existence of solitary waves in martensitic alloys. International Journal of Engineering Science, 29(2), 243–258.MathSciNetzbMATHGoogle Scholar
  88. 88.
    Brinson, L. C., & Lammering, R. (1993). Finite element analysis of the behavior of shape memory alloys and their applications. International Journal of Solids and Structures, 30(23), 3261–3280.zbMATHGoogle Scholar
  89. 89.
    Ivshin, Y., & Pence, T. J. (1993). A thermomechanical model for a one variant shape memory material. Journal of Intelligent Material Systems and Structures, 5(7), 455–473.Google Scholar
  90. 90.
    Liang, C., & Rogers, C. A. (1990). One-dimensional thermomechanical constitutive relations for shape memory materials. Journal of Intelligent Material Systems and Structures, 1(2), 207–234.Google Scholar
  91. 91.
    Boyd, J. G., & Lagoudas, D. C. (1994). Thermomechanical response of shape memory composites. Journal of Intelligent Material Systems and Structures, 5, 333–346.Google Scholar
  92. 92.
    Tanaka, K. (1986). A thermomechanical sketch of shape memory effect: One-dimensional tensile behavior. Res Mechanica, 18, 251–263.Google Scholar
  93. 93.
    Brinson, L. C. (1993). One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable. Journal of Intelligent Material Systems and Structures, 4, 229–242.Google Scholar
  94. 94.
    Lubliner, J., & Auricchio, F. (1996). Generalized plasticity and shape-memory alloys. International Journal of Solids and Structures, 33(7), 991–1003.zbMATHGoogle Scholar
  95. 95.
    Panoskaltsis, V. P., Bahuguna, S., & Soldatos, D. (2004). On the thermomechanical modeling of shape memory alloys. International Journal of Non-Linear Mechanics, 39(5), 709–722.zbMATHGoogle Scholar
  96. 96.
    Sun, Q. P., & Hwang, K. C. (1994). Micromechanics constitutive description of thermoelastic martensitic transformations. Advances in Applied Mechanics, 31, 249–298.zbMATHGoogle Scholar
  97. 97.
    Kosel, F., & Videnic, T. (2007). Generalized plasticity and uniaxial constrained recovery in shape memory alloys. Mechanics of Advanced Materials and Structures, 14(1), 3–12.Google Scholar
  98. 98.
    Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42, 35–56.Google Scholar
  99. 99.
    Nieboer, E., Tom, R. T., & Sanford, W. E. (1988). Nickel metabolism in man and animals. In H. Sigel (Ed.), Nickel and its role in biology: Metal ions in biological systems (Vol. 23, pp. 91–121). New York: Marcel Dekker.Google Scholar
  100. 100.
    Fletcher, G. G., Rossetto, F. E., Turnbull, J. D., & Nieboer, E. (1994). Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds. Environmental Health Perspectives, 102(Suppl 3), 69–79.Google Scholar
  101. 101.
    Yamamoto, A., Honma, R., & Sumita, M. (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of Biomedical Materials Research, 39, 331–340.Google Scholar
  102. 102.
    Shih, C., Lin, S., Chung, K., Chen, Y., Su, Y., Lai, S., et al. (2000). The cytotoxicity of corrosion products of Nitinol stent wires on cultured smooth muscle cells. Journal of Biomedical Material Research, 52, 395–403.Google Scholar
  103. 103.
    Wever, D. J., Veldhuizen, A. G., Sanders, M. M., Schakenraad, J. M., & Horn, J. R. (1997). Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials, 18, 1115–1120.Google Scholar
  104. 104.
    Wataha, I. C., Lockwood, P. E., Marek, M., & Ghazi, M. (1999). Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. Journal of Biomedical Materials Research, 45, 251–257.Google Scholar
  105. 105.
    Ryhänen, J., Niemi, E., Serlo, W., Niemelä, E., Sandvik, P., Pernu, H., et al. (1997). Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. Journal of Biomedical Materials Research, 35, 451–457.Google Scholar
  106. 106.
    Wirth, C., Comte, V., Lagneau, C., Exbrayat, P., Lissac, M., Jaffrezic-Renault, N., et al. (2005). Nitinol surface roughness modulates in vitro cell response: A comparison between fibroblasts and osteoblasts. Materials Science and Engineering C, 25, 51–60.Google Scholar
  107. 107.
    Trepanier, C., Leung, T., Tabrizian, M., Yahia, L. H., Bienvenu, J., Tanguay, J., et al. (1999). Preliminary investigation of the effect of surface treatment on biological response to shape memory NiTi stents. Journal of Biomedical Materials Research, 48, 165–171.Google Scholar
  108. 108.
    Shabalovskaya, S. A. (2002). Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Medical Materials and Engineering, 12, 69–109.Google Scholar
  109. 109.
    Shabalovskaya, S. A. (1996). On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. BioMedical Materials and Engineering, 6, 267–289.Google Scholar
  110. 110.
    Frauchiger, V. M., Schlottig, F., Gasser, B., & Textor, M. (2004). Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials, 25, 593–606.Google Scholar
  111. 111.
    Lu, X., Zhao, Z., & Leng, Y. (2006). Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Materials Science and Engineering: C, 27(4), 700–708 (in Press).Google Scholar
  112. 112.
    Park, J., Kim, D. J., Kim, Y. K., Lee, K. H., Lee, K. H., Lee, H., et al. (2003). Improvement of the biocompatibility and mechanical properties of surgical tools with TiN coating by PACVD. Thin Solid Films, 435(1–2), 102–107.Google Scholar
  113. 113.
    Shevchenko, N., Pham, M. T., & Maitz, M. F. (2004). Studies of surface modified NiTi alloy. Applied Surface Science, 235, 126–131.Google Scholar
  114. 114.
    Endo, K. (1995). Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1). Molecular structure and biological activity of a modified NiTi alloy surface. Dental Materials Journal, 14, 185–198.Google Scholar
  115. 115.
    Liu, F., Wang, F., Shimizu, T., Igarashi, K., & Zhao, L. (2006). Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. Ceramics International, 32(5), 527–531.Google Scholar
  116. 116.
    Schillinger, M., Sabeti, S., & Loewe, C. (2006). Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. Journal of Vascular Surgery, 44(3), 684.Google Scholar
  117. 117.
    Rapp, B. (2004). Nitinol for stents. Materials Today, 7(5), 13.Google Scholar
  118. 118.
    Tyagi, S., Singh, S., Mukhopadhyay, S., & Kaul, U. A. (2003). Self- and balloon-expandable stent implantation for severe native coarctation of aorta in adults. American Heart Journal, 146(5), 920–928.Google Scholar
  119. 119.
    Simon, M., Kaplow, R., Salzman, E., & Freiman, D. (1977). A vena cava filter using thermal shape memory alloy experimental aspects. Radiology, 125, 87–94.Google Scholar
  120. 120.
    Duerig, T., Pelton, A., & Stöckel, D. (1999). An overview of nitinol medical applications. Materials Science and Engineering, A273–275, 149–160.Google Scholar
  121. 121.
    Fischer, H., Vogel, B., Grünhagen, A., Brhel, K. P., & Kaiser, M. (2002). Applications of shape-memory alloys in medical instruments. Materials Science Forum, V, 394–395, 9–16.Google Scholar
  122. 122.
    Pelton, A. R., Stöckel, D., & Duerig, T. W. (2000). Medical uses of nitinol. Materials Science Forum, 327–328, 63–70.Google Scholar
  123. 123.
    Dai, K., Wu, X., & Zu, X. (2002). An investigation of the selective stress-shielding effect of shape-memory sawtooth-arm embracing fixator. Materials Science Forum, 394–395, 17–24.Google Scholar
  124. 124.
    Zhang, C., Xu, S., Wang, J., Yu, B., & Zhang, Q. (2002). Design and clinical applications of swan-like memory-compressive connector for upper-limb diaphysis. Materials Science Forum, 394–395, 33–36.Google Scholar
  125. 125.
    Da, G., Wang, T., Liu, Y., & Wang, C. (2002). Surgical treatment of tibial and femoral factures with TiNi Shape-memory alloy interlocking intramedullary nails. Materials Science Forum, 394–395, 37–40.Google Scholar
  126. 126.
    Song, C., Frank, T. G., Campbell, P. A., & Cuschieri, A. (2002). Thermal modelling of shape—memory alloy fixator for minimal-access surgery. Materials Science Forum, 394–395, 53–56.Google Scholar
  127. 127.
    Xu, S., Zhang, C., Li, S., Su, J., & Wang, J. (2002). Three-dimensional finite element analysis of nitinol patellar concentrator. Materials Science Forum, 394–395, 45–48.Google Scholar
  128. 128.
    Chu, Y., Dai, K., Zhu, M., & Mi, X. (2000). Medical application of NiTi shape memory alloy in China. Materials Science Forum, 327–328, 55–62.Google Scholar
  129. 129.
    Kokubo, T., Kim, H. M., & Kawashita, M. (2003). Novel bioactive materials with different mechanical properties. Biomaterials, 24(13), 2161–2175.Google Scholar
  130. 130.
    Lima-L to SpA, Medical Systems, Via Nazionale 52, 33030 Villanova di San Daniele del Friuli (Udine), Italy.
  131. 131.
    Combes, C., Rey, C., & Freche, M. (1998). XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces. Colloids and Surfaces B: Biointerfaces, 11(1–2), 15–27.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • M. J. Jackson
    • 1
    Email author
  • J. Kopac
    • 2
  • M. Balazic
    • 2
  • D. Bombac
    • 2
  • M. Brojan
    • 2
  • F. Kosel
    • 2
  1. 1.Kansas State UniversitySalinaUSA
  2. 2.University of LjubljanaLjubljanaSlovenia

Personalised recommendations