Advertisement

Applications of Carbon Nanotubes in Bio-Nanotechnology

  • T. Okpalugo
  • W. Ahmed
  • M. J. JacksonEmail author
Chapter

Abstract

Patients are seeking for better health care, while healthcare providers and insurance companies are calling for cost-effective diagnosis and treatments. The biomedical industry thus faces the challenge of developing devices and materials that offer benefits to both patients and healthcare industry. The combination of biology and nanotechnology is expected to revolutionize biomedical research by exploiting novel phenomena and properties of materials present at nanometer length scale. This will lead to the creation of functional materials, devices, and systems through control of matter on the nanometer meter scale and the direct application of nanomaterials to biological targets.

Keywords

Carbon Nanotechnology Nanotubes Medical devices Bio-nanotechnology 

References

  1. 1.
    Xiao, Y., et al. (2003). Science, 299, 1877.Google Scholar
  2. 2.
    Elghanian, R., et al. (1997). Science, 277, 1078.Google Scholar
  3. 3.
    Averitt, R. D., et al. (1997). Physical Review Letters, 78, 4217.Google Scholar
  4. 4.
    Clapp, A. R., et al. (2004). Journal of the American Chemical Society, 126, 301.Google Scholar
  5. 5.
    Wang, S., et al. (2002). Nano Letters, 2, 817.Google Scholar
  6. 6.
    Chan, W. C. W., & Nei, S. (1998). Science, 281, 2016.Google Scholar
  7. 7.
    Cao, Y. W. C., Jin, R. C., & Mirkin, C. A. (2002). Science, 297, 1536.Google Scholar
  8. 8.
    Hartgerink, J. D., Beniash, E., & Stupp, S. I. (2001). Science, 294, 1684.Google Scholar
  9. 9.
    Koltover, I., Salditt, T., Radler, J. O., & Sa, C. R. (1998). Science, 281, 78.Google Scholar
  10. 10.
    Ulrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Chemical Reviews, 99, 3181.Google Scholar
  11. 11.
    Fandrich, M., Fletcher, M. A., & Dobson, C. M. (2001). Nature, 410, 165.Google Scholar
  12. 12.
    Seeman, N. C., & Belcher, A. M. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 6451.Google Scholar
  13. 13.
    Ravindran, S., Chaudhary, S., Colburn, B., Ozkan, M., & Ozkan, C. S. (2003). Nano Letters, 3, 447.Google Scholar
  14. 14.
    Haremza, J. M., Hahn, M. A., Krauss, T. D., Chen, S., & Calcines, J. (2002). Nano Letters, 2, 1253.Google Scholar
  15. 15.
    Hazani, M., Naaman, R., Hennrich, F., & Kappes, M. M. (2003). Nano Letters, 3, 153.Google Scholar
  16. 16.
    Dwyer, C., Guthold, M., Falvo, M., & Washburn, S. (2002). Nanotechnology, 13, 601.Google Scholar
  17. 17.
    Ellis, A. V., Vijayamohanan, K., Goswami, R., Chakrapani, N., Ramanathan, L. S., Ajayan, P. M., & Ramanath, G. (2003). Nano Letters, 3, 279.Google Scholar
  18. 18.
    Wilkinson, J. M. (2003). Medical Device Technologies, 14, 29.Google Scholar
  19. 19.
    Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.Google Scholar
  20. 20.
    Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Chemical Communications, 16.Google Scholar
  21. 21.
    Kam, N. W. S., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Journal of the American Chemical Society, 126, 6850. Google Scholar
  22. 22.
    Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., et al. (2003). Journal of the American Chemical Society, 125, 9006.Google Scholar
  23. 23.
    Wang, J., Liu, G., & Jan, M. R. (2004). Journal of the American Chemical Society, 126, 3010.Google Scholar
  24. 24.
    Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Electroanalysis, 14, 225.Google Scholar
  25. 25.
    Wang, J., Kawde, A. N., & Jan, M. R. (2004). Biosensors and Bioelectronics, 20, 995.Google Scholar
  26. 26.
    Chen, Y., Zhang, Y. Q., Zhang, T. H., Gan, C. H., Zheng, C. Y., & Yu, G. (2006). Carbon, 44, 37.Google Scholar
  27. 27.
    Iijima, S. (1991). Nature, 354, 56.Google Scholar
  28. 28.
    Thess, A., et al. (1996). Science, 273, 483.Google Scholar
  29. 29.
    Tans, S. J., et al. (1997). Nature, 386, 474.Google Scholar
  30. 30.
    Joachim, C., & Gimzewski, J. K. (1997). Chemical Physics Letters, 265, 353.Google Scholar
  31. 31.
    Tomanek, D., & Enbody, R. J. (Eds.). (2000). Science and application of nanotubes. New York: Kluwer Academic/Plenum Publishers.Google Scholar
  32. 32.
    Fischer, J. E., et al. (1997). Physical Review B, 55, R4921.Google Scholar
  33. 33.
    Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., & Smalley, R. E. (1997). Nature, 388, 255.Google Scholar
  34. 34.
    Claye, A. S., Fischer, J. E., Huffman, C. B., Rinzler, A. G., & Smalley, R. E. (2000). Journal of the Electrochemical Society, 147, 2845.Google Scholar
  35. 35.
    Gavalas, V. G., Andrews, R., Bhattacharyya, D., & Bachas, L. G. (2001). Nano Letters, 1, 719.Google Scholar
  36. 36.
    Garjonyte, R., & Malinauskas, A. (2001). Biosensor & Bioelectronics, 15, 445.Google Scholar
  37. 37.
    Rubianes, M. D., & Rivas, G. A. (2003). Electrochemistry Communications, 5, 689.Google Scholar
  38. 38.
    Wang, J., Kawde, A. N., & Jan, M. R. (2004). Biosensors & Bioelectronics, 20, 995.Google Scholar
  39. 39.
    Ye, J. S., Liu, X., Cui, H. F., Zhang, W. D., Sheu, F. S., & Lim, T. M. (2005). Electrochemistry Communications, 7, 249.Google Scholar
  40. 40.
    Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.Google Scholar
  41. 41.
    Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T. W., et al. (2002). Nano Letters, 2, 311.Google Scholar
  42. 42.
    Sotiropoulou, S., Gavalas, V., Vamvakaki, V., & Chaniotakis, N. A. (2003). Biosensors & Bioelectronics, 18, 211.Google Scholar
  43. 43.
    Biro, L. P., Horvath, Z. E., Szlamas, L., Kertesz, K., Weber, F., Juhasz, G., et al. (2003). Chemical Physics Letters, 399, 402.Google Scholar
  44. 44.
    Journet, C., & Bernier, P. (1998). Applied Physics A, 1, 9.Google Scholar
  45. 45.
    Zhang, Y. (2001). Applied Physics Letters, 79, 3155.Google Scholar
  46. 46.
    Chiang, M., Liu, K., Lai, T., Tsai, C., Cheng, H., & Lin, I. (2001). Journal of Vacuum Science and Technology B, 19, 1034.Google Scholar
  47. 47.
    Biro, L. P., Horvath, Z. E., Szlamas, L., Kertesz, K., Weber, F., Juhasz, G., et al. (2003). Chemical Physics Letters, 399, 402.Google Scholar
  48. 48.
    Park, D., Kim, Y. H., & Lee, J. K. (2003). Carbon, 41, 1025.Google Scholar
  49. 49.
    Qin, L. C., Zhou, D., Krauss, A. R., & Gruen, D. M. (1998). Applied Physics Letters, 72, 3437.Google Scholar
  50. 50.
    Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Plasma Sources Science and Technology, 12, 205.Google Scholar
  51. 51.
    Dai, H. (2002). Surface Sci, 500, 218.Google Scholar
  52. 52.
    Popov, V. (2004). Materials Science and Engineering R Reports, 43.Google Scholar
  53. 53.
    Dresselhaus, M., Dresselhaus, G., & Saito, R. (1995). Carbon, 33, 883.Google Scholar
  54. 54.
    Liang, W. Z., Chen, G. H., Li, Z., & Tang, Z. K. (2002). Applied Physics Letters, 80, 3415.Google Scholar
  55. 55.
    Ajayan, P. M. (1999). Chemical Reviews, 99, 1787.Google Scholar
  56. 56.
    Baughman, R. H., Zakhidov, A. A., & Heer, W. A. (2002). Science, 297, 787.Google Scholar
  57. 57.
    Thostenson, E. T., Ren, Z., & Chou, T. W. (2001). Composites Science and Technology, 61, 1899.Google Scholar
  58. 58.
    Lupo, F., Kamalakaran, R., Scheu, C., Grobert, N., & Ruhle, M. (2004). Carbon, 42, 1995.Google Scholar
  59. 59.
    Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992). Physical Review Letters, 68, 631.Google Scholar
  60. 60.
    Hamada, N., Sawada, S. I., & Oshiyama, A. (1992). Physical Review Letters, 68, 1579.Google Scholar
  61. 61.
    Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Applied Physics Letters, 60, 2204.Google Scholar
  62. 62.
    Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Synthetic Metals, 103, 2555.Google Scholar
  63. 63.
    Chen, J., Hamon, M. A., Hu, H., Chen, Y., Rao, A. M., Eklund, P. C., & Haddon, R. C. (1998). Science, 282, 95.Google Scholar
  64. 64.
    Britto, P. J., Santhanam, K. S. V., & Ajayan, P. M. (1996). Bioelectrochemistry and Bioenergetics, 41, 121.Google Scholar
  65. 65.
    Star, A., Gabriel, J.-C. P., Bradley, K., & Gruner, G. (2003). Nano Letters, 3, 459.Google Scholar
  66. 66.
    Boussaad, S., Tao, N., Zhang, R., Hopson, T., & Nagahara, L. A. (2003). Chemical Communications, 1502.Google Scholar
  67. 67.
    Besteman, K., Lee, J. O., Wiertz, F. G., Heering, H. A., & Dekker, C. (2003). Nano Letters, 3, 727.Google Scholar
  68. 68.
    Chen, R, J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., et al. (2003). Proceedings of National Academy of Sciences U.S.A, 100, 4984.Google Scholar
  69. 69.
    Wang, J., Liu, G., & Jan, M. R. (2004). Journal of the American Chemical Society, 126, 3010.Google Scholar
  70. 70.
    Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., & Green, M. L. H. (2002). Journal of the American Chemical Society, 124, 2664.Google Scholar
  71. 71.
    Pathirana, S. T., Barbaree, J., Chin, B. A., Hartell, M. G., Neely, W. C., & Vodyanoy, V. (2000). Biosensors & Bioelectronics, 15, 135.Google Scholar
  72. 72.
    Huang, T. S., Tzeng, Y., Liu, Y. K., Chen, Y. C., Walker, K. R., Guntupalli, R., & Liu, C. (2004). Diamond and Related Materials, 13, 1098.Google Scholar
  73. 73.
    Bandyopadhyaya, R., Nativ-Roth, E., Regev, O., & Yerushalmi-Rozen, R. (2002). Nano Letters, 2, 25.Google Scholar
  74. 74.
    Bodanszky, M., & Bodanszky, A. (1994). Journal of the American Chemical Society, 126, 12750.Google Scholar
  75. 75.
    Bourdillon, C., Demaille, C., Gueris, J., Moirourx, J., & Saveant, J. M. (1993). Journal of the American Chemical Society, 115, 12264.Google Scholar
  76. 76.
    Cai, C., & Chen, J. (2004). Analytical Biochemistry, 332, 75.Google Scholar
  77. 77.
    Gooding, J. J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., et al. (2003). Journal of the American Chemical Society, 125, 9006.Google Scholar
  78. 78.
    Guiseppi-Elie, A., Lei, C., & Baughman, R. H. (2002). Nanotechnology, 13, 559.Google Scholar
  79. 79.
    Hecht, H. J., Kalisz, H. M., Hendle, J., Schmid, R. D., & Shomburg, (1993). Journal of Molecular Biology, 229, 153.Google Scholar
  80. 80.
    Li, J., Ng, H. T., Cassell, A., Fan, W., Chen, H., Ye, Q., et al. (2003). Nanoletters, 3, 597.Google Scholar
  81. 81.
    Domynguez, E., Rincon, O., & Narvaez, A. (2004). Analytical Chemistry, 76, 3132.Google Scholar
  82. 82.
    Decher, G. (1997). Science, 277, 1232.Google Scholar
  83. 83.
    Narvaez, A., Suarez, I., Popescu, I., Katakis, I., & Domynguez, E. (2004). Biosensors & Bioelectronics, 15, 43.Google Scholar
  84. 84.
    Musameh, M., Wang, J., Merkoci, A., & Lin, Y. (2002). Electrochemistry Communications, 4, 743.Google Scholar
  85. 85.
    Dryhurst, G., Kadish, K. M., Scheller, F., & Rennerberg, R. (1982). Biological electro-chemistry. New York: Academic Press.Google Scholar
  86. 86.
    Gorton, L., Lindgren, A., Larsson, T., Munteanu, F. D., Ruzgas, T., & Gazaryan, I. (1999). Analytica Chimica Acta, 400, 91.Google Scholar
  87. 87.
    Hu, N. (2001). Pure and Applied Chemistry, 73, 1979.Google Scholar
  88. 88.
    Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.Google Scholar
  89. 89.
    Guiseppi-Elie, A., Lei, C., & Baughman, R. H. (2002). Nanotechnology, 13, 559.Google Scholar
  90. 90.
    Cai, C., & Chen, J. (2004). Analytical Biochemistry, 332, 75.Google Scholar
  91. 91.
    Li, M., Wang, J., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.Google Scholar
  92. 92.
    Davis, J. J., Coles, R. J., & Hill, H. A. O. (1997). Journal of Electroanalytical Chemistry, 440, 279.Google Scholar
  93. 93.
    Wang, S. G., Wang, R., Sellin, P. J., & Zhang, Q. (2004). Biochemical and Biophysical Research Communications, 325, 1433.Google Scholar
  94. 94.
    Tsang, S. C., Davis, J. J., Green, M. L. H., Hill, H. A. O., Leung, Y. C., & Sadler, P. J. (1995). Journal of the Chemical Society, Chemical Communications, 1803.Google Scholar
  95. 95.
    Azamian, B. R., Davis, J. J., Coleman, K. S., Bagshaw, C. B., & Green, M. L. H. (2002). Journal of the American Chemical Society, 124, 664.Google Scholar
  96. 96.
    Shim, M., Kam, N. W. S., Chen, R. J., Li, Y., & Dai, H. (2002). Nano Letters, 2, 285.Google Scholar
  97. 97.
    Wang, J., & Musameh, M. (2003). Analytical Chemistry, 75, 2075.Google Scholar
  98. 98.
    Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., et al. (1998). Inorg Chemica Acta, 27, 261.Google Scholar
  99. 99.
    Maria, D. R., & Gustavo, A. R. (2003). Electrochemistry Communications, 5, 689.Google Scholar
  100. 100.
    Rubianes, M., & Rivas, G. (2003). Electrochemistry Communications, 5, 689.Google Scholar
  101. 101.
    Zhao, G., Zhang, L., Wei, X., & Yang, Z. (2003). Electrochemistry Communications, 5, 825.Google Scholar
  102. 102.
    Cai, C., Chen, J., & Lu, T. (2004). Science in China, Series B: Chemistry, Life Sciences, & Earth Sciences, 47, 113.Google Scholar
  103. 103.
    Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., & Rus-ling, J. F. (2003). Electrochemistry Communications, 5, 408.Google Scholar
  104. 104.
    Chan, W. C. W., & Nei, S. (1998). Quantum dot bioconjugates for ultra- sensitive nonisotopic detection. Science, 281, 2016.Google Scholar
  105. 105.
    Hamon, M. A., Chen, J., Hu, H., Chen, Y., Itkis, M. E., Rao, A. M., et al. (1999). Advanced Materials, 11, 834.Google Scholar
  106. 106.
    Strano, M. S., Dyke, C. A., Usrey, M. L., Barone, P. W., Allen, M. J., Shan, H., et al. (2003). Science, 301, 1519.Google Scholar
  107. 107.
    Koshio, A., Yudasaka, M., Zhang, M., & Iijima, S. (2001). Nano Letters, 1, 361.Google Scholar
  108. 108.
    Hiura, H., Ebbesen, T. W., & Tanigaki, K. (1995). Advanced Materials, 7, 275.Google Scholar
  109. 109.
    Wang, J. X., Li, M. X., Shi, Z. J., Li, N. Q., & Gu, Z. N. (2001). Electrochimica Acta, 47, 651.Google Scholar
  110. 110.
    Lin, Y., Taylor, S., Li, H. P., Fernando, K. A. S., Qu, L. W., Wang, W., et al. (2004). Journal of Materials Chemistry, 14, 527.Google Scholar
  111. 111.
    Riggs, J. E., Guo, Z.-X., Carroll, D. L., & Sun, Y. P. (2000). Journal of the American Chemical Society, 122, 5879.Google Scholar
  112. 112.
    Zhao, B., Hu, H., & Haddon, R. C. (2004). Advanced Functional Materials, 14, 71.Google Scholar
  113. 113.
    Titus, E., Ali, N., Cabral, G., Ramesh Babu, P., & Gracio, J. (2006) Journal of Materials Engineering and Performance, 2.Google Scholar
  114. 114.
    Sotiropoulou, S., & Chainiotakis, N. A. (2003). Analytical and Bioanalytical Chemistry, 375, 103.Google Scholar
  115. 115.
    Xu, J. M. (2003). Nanotube electronics: non-CMOS routes. Proceedings of the IEEE, Special Issue on Nanoelectronics and Giga-scale Systems, 91, 1819–1829.Google Scholar
  116. 116.
    Fu, K., Huang, W., Lin, Y., Zhang, D., Hanks, T. W., Rao, A. M., & Sun, Y.-P. (2002). Nanotechnology, 2, 457.Google Scholar
  117. 117.
    Yao, D., Cao, H., Wen, S., Liu, D., Bai, Y., & Zheng, W. (2005). Bioelectrochemistry, 68, 131.Google Scholar
  118. 118.
    Musameh, M., Wang, J., Merkoci, A., & Lin, Y. (2002). Electrochemistry Communications, 4, 743.Google Scholar
  119. 119.
    Wang, J., Li, M., Shi, Z., Li, N., & Gu, Z. (2002). Analytical Chemistry, 74, 1993.Google Scholar
  120. 120.
    Gong, K., Dong, Y., Xiong, S., Chen, Y., & Mao, L. (2004). Biosensors and Bioelectronics, 20, 253.Google Scholar
  121. 121.
    Zhang, M., Smith, A., & Gorski, W. (2004). Analytical Chemistry, 76, 5045.Google Scholar
  122. 122.
    Wang, J., & Musameh, M. (2003). Analytical Chemistry, 75, 2075.Google Scholar
  123. 123.
    Davis, J., Coles, R., & Hill, H. (1997). Electroanalytical Chemistry, 440, 279.Google Scholar
  124. 124.
    Rubianes, M., & Rivas, G. (2003). Electrochemistry Communications, 5, 689.Google Scholar
  125. 125.
    Wang, J. (2004). Musameh. Analyst, 129, 1.MathSciNetGoogle Scholar
  126. 126.
    Guo, M., Chen, J., Liu, D., Nie, L., & Yao, S. (2004). Bioelectrochemistry, 29, 29.Google Scholar
  127. 127.
    Wang, J., Musameh, M., & Lin, Y. (2003). Journal of the American Chemical Society, 125, 2408.Google Scholar
  128. 128.
    Wang, Z., Liu, J., Liang, Q., Wang, Y., & Luo, G. (2002). Analyst, 127, 653.Google Scholar
  129. 129.
    Joshi, P., Merchant, S. A., Wang, Y., & Schmidtke, D. (2005). Analytical Chemistry, 77, 3183.Google Scholar
  130. 130.
    Lin, Y., Lu, F., Tu, Y., & Ren, Z. (2004). Nano Letters, 4, 191.Google Scholar
  131. 131.
    Guan, W., Li, Y., Chen, Y., Zhang, X., & Hu, G. (2005). Biosensors & Bioelectronics, 21, 508.Google Scholar
  132. 132.
    Tang, H., Chen, J., Yao, S., Nie, L., Deng, G., & Kuang, Y. (2004). Analytical Biochemistry, 331, 89.Google Scholar
  133. 133.
    Gao, M., Dai, L., & Wallace, G. (2003). Synthetic Metals, 137, 1393.Google Scholar
  134. 134.
    Lim, S., Wei, J., Lin, J., Li, Q., & KuaYou, J. (2005). Biosensors & Bioelectronics, 20, 2341.Google Scholar
  135. 135.
    Ye, J., Wen, Y., Zhang, W., Gan, L., Xu, G., & Sheu, F. (2004). Electrochemistry Communications, 6, 66.Google Scholar
  136. 136.
    Yang, M., Yang, Y., Liu, Y., Shen, G., & Yu, R. (2006). Biosensors & Bioelectronics, 27, 246.Google Scholar
  137. 137.
    Joshi, P., Merchant, S. A., Wang, Y., & Schmidtke, D. (2005). Analytical Chemistry, 77, 3183.Google Scholar
  138. 138.
    Sun, H., & Hu, N. (2005). Analyst, 130, 76.Google Scholar
  139. 139.
    Mattson, M. P., Haddon, R. C., & Rao, A. M. (2000). Journal of Molecular Medicine, 14, 175.Google Scholar
  140. 140.
    Zhang, X., Prasad, S., Niyogi, S., Morgan, A., Ozkan, M., & Ozkan, C. S. (2005). Sensors and Actuators B, 106, 843.Google Scholar
  141. 141.
    Hu, H., Ni, Y., Montana, V., Haddon, R. C., & Parpura, V. (2004). Nanoletters, 4(3), 507.Google Scholar
  142. 142.
    Bekyarova, E., Ni, Y., Malarkey, E. B., Montana, V., McWilliams, J. L., Haddon, R. C., & Parpura, V. (2005). Journal of Biomedical Nanotechnology, 1, 17.Google Scholar
  143. 143.
    Kam, N. W. S., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Journal of the American Chemical Society, 126, 6850.Google Scholar
  144. 144.
    Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., & Mioskowski, C. (1999). Angewandte Chemie Int Ed, 38, 1912.Google Scholar
  145. 145.
    Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Chemical Communications, 16.Google Scholar
  146. 146.
    Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., & Mioskowski, C. (1999). Angewandte Chemie Int Ed, 38, 1912.Google Scholar
  147. 147.
    Guo, Z., Sadler, P. J., & Tsang, S. C. (1998). Advanced Materials, 10, 701.Google Scholar
  148. 148.
    Recum, V. (Ed.). (1999). Handbook of biomaterials evaluation, scientific, technical and clinical testing of implant materials (2nd ed., p. 915). PA: Taylor and Francis.Google Scholar
  149. 149.
    Black, J. (1992). Biological performance of materials: Fundamentals of biocompatibility. New York: Marcel Deckker.Google Scholar
  150. 150.
    Christel, P., Meunier, A., & Lee, A. J. C. (Eds.). (1997). Biological and biomechanical performance of biomaterials (p. 81). Amsterdam, The Netherlands: Elsevier.Google Scholar
  151. 151.
    Khor, K. A., Fu, L., Lim, V. J. P., & Cheang, P. (2000). The effects of ZrO2 on the phase compositions of plasma sprayed HA/YSZ composite coatings. Materials Science and Engineering A, 276, 160.Google Scholar
  152. 152.
    Van Blitterswijk, C. A., Grote, J. J., Kuijpers, W., Daems, W. T., & de Groot, K. A. (1986). Biomaterials, 7, 553.Google Scholar
  153. 153.
    Tancred, D. C., McCormack, B. A. O., & Carr, A. J. (1998). Biomaterials, 19, 1735.Google Scholar
  154. 154.
    Wang, M., Deb, S., Tanner, K., & Bonfield, W. (1996). In Proceedings of the 7th European Conference on Composite Materials, London, 455.Google Scholar
  155. 155.
    Hulbert, S. F., & Hench, L. L. (1987). In P. Vineenzini (Ed.), High technology ceramics (Vol. 3). Amsterdam: Elsevier.Google Scholar
  156. 156.
    Bagambisa, F. B., Joos, U., & Schilli, W. (1993). Journal of Biomedical Research, 27, 1047.Google Scholar
  157. 157.
    Rodriguez-Lorenzo, L. M., Valler-Regi, M., & Ferreira, J. M. F. (2001). Biomaterials, 22, 583.Google Scholar
  158. 158.
    Yasuda, H. Y., Mahara, S., Umakoshi, Y., Imatazo, S., & Ebisu, S. (2001). Bio-materials, 21, 2045.Google Scholar
  159. 159.
    Lupo, F., Kamalakaran, R., Scheu, C., Grobert, N., & Uhle, M. R. (2004). Carbon, 42, 1995.Google Scholar
  160. 160.
    Siegal, G., van Duynhoven, J., & Baldus, M. (1999). Chemistry & Biology, 3, 530.Google Scholar
  161. 161.
    Kim, S. H. (1998). Nature Structural Biology, 5, 643.Google Scholar
  162. 162.
    Wuthrich, K. (2000). Nature Structural Biology, 7, 188.Google Scholar
  163. 163.
    Bustamante, C., Rivetti, C., & Keller, D. J. (1997). Current Opinion in Structural Biology, 7, 709.Google Scholar
  164. 164.
    Hansma, H. G. & Pietrasanta, L. I. (1998). Current Opinion in Chemical Biology, 2, 579.Google Scholar
  165. 165.
    Woolley, A. T., Cheung, C. L., Hafner, J. H., & Lieber, C. M. (2000). Chemistry & Biology, 7, R193–R204.Google Scholar
  166. 166.
    Kasas, S., Thomson, N. H., Smith, B. L., Hansma, P. K., Miklossy, J., & Hansma, H. G. (1998). International Journal of Imaging Systems and Technology, 8, 151.Google Scholar
  167. 167.
    Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., & Smalley, R. E. (1996). Nature, 384, 147.Google Scholar
  168. 168.
    Wong, S. S., Harper, J. D., Lansbury, P. T, Jr, & Lieber, C. M. (1998). Journal of the American Chemical Society, 120, 603.Google Scholar
  169. 169.
    Wong, S. S., Woolley, A. T., Odom, T. W., Huang, J.-L., Kim, P., Ve- zenov, D. V., & Lieber, C. V. (1998). Applied Physics Letters, 73, 3465.Google Scholar
  170. 170.
    Sun, L. F., Xie, S. S., Liu, W., Zhou, W. Y., Liu, Z. Q., Tang, D. S., et al. (2003). Nature, 403, 384.Google Scholar
  171. 171.
    Nishijima, H., Kamo, S., Akita, S., Nakayama, Y., Hohmura, K. I., Yoshimura, S. H., & Takeyasu, K. (1999). Applied Physics Letters, 74, 4061.Google Scholar
  172. 172.
    Hafner, J. H., Bronikowski, M. J., Azamian, B. R., Nikolaev, P., Rinzler, A. G., Colbert, D. T., et al. (1998). Chemical Physics Letters, 296, 195.Google Scholar
  173. 173.
    Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Rohmund, F., Colbert, D. T., Smith, K. A., & Smalley, R. E. (1999). Chemical Physics Letters, 313, 91.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.University of UlsterNewtownabbeyUK
  2. 2.School of MedicineUniversity of Central LancashirePrestonUK
  3. 3.Kansas State UniversityKansasUSA

Personalised recommendations