Surgical Tools and Medical Devices pp 303-378 | Cite as
Biomaterial–Cell Tissue Interactions in Surface Engineered Carbon-Based Biomedical Implants and Devices
Abstract
Implantable prosthesis and medical devices are subjected to several interacting forces whenever they come in contact with the physiologic systems (blood, immune, musculoskeletal, nervous, digestive, respiratory, reproductive and urinary) and organs of the human body. These interactions include the effects of core body temperature (and/or variable temperatures in the oral cavity), the body physiologic fluids containing several ions and biomolecules, proteins and cells of various progeny and functions. This chapter focuses on cell tissue–implant interactions and how carbon-based implants are being developed for next-generation implantable devices.
Keywords
Cell interactions Tissue Medical devices Carbon NanotechnologyReferences
- 1.Bittl, J. A. (1996). Advances in coronary angioplasty. New England Journal of Medicine, 335, 1290–1302.Google Scholar
- 2.Gawaz, M., Neumann, F. J., Ott, I., May, A., & Schomig, A. (1996). Circulation, 94, 279–285.Google Scholar
- 3.Inoue, T., Sakai, Y., Fujito, T., Hoshi, K., Hayashi, T., Takayanagi, K., et al. (1996). Circulation, 94, 1518–1523.Google Scholar
- 4.Lahann, J., Klee, D., Thelen, H., Bienert, H., Vorwerk, D., & Hocker, H. (1999). Journal of Materials Science: Materials in Medicine, 10, 443–448.Google Scholar
- 5.Haycox, C. L., & Ratner, B. D. (1993). Journal of Biomedical Materials Research, 27, 1181–1193.Google Scholar
- 6.Courtney, J. M., Lamba, N. M. K., Sundaram, S., & Forbes, C. D. (1994). Biomaterials, 15, 737–744.Google Scholar
- 7.Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.Google Scholar
- 8.Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, et al. (2000) Infusionstherapie und Transfusionmedizin, 27(4), 200–206.Google Scholar
- 9.Yang, Y. (1996). S. F Franzen, C.L Olin. Cells and Materials, 6(4), 339–354.Google Scholar
- 10.Yang, Y., Franzen, S. F., & Olin, C. L. (1996). The Journal of Heart Valve Disease, 5, 532–537.Google Scholar
- 11.Bittl, J. A. (1996). Subacute stent occlusion: Thrombus horribilis. JACC, 28, 368–370.Google Scholar
- 12.Mark, K., Belli, G., Ellis, S., & Moliterno, D. (1996). Journal of the American College of Cardiology, 27, 494–503.Google Scholar
- 13.Colombo, A., Hall, P., Nakamura, S., Almagor, Y., Maiello, L., Martini, G., et al. (1995). Circulation, 91, 1676–1688.Google Scholar
- 14.Gott, V. L., Koepke, D. E., Daggett, R. L., Zarnstorff, W., & Young, W. P. (1961). The coating of intravascular plastic prostheses with colloidal graphite. Surgery, 50, 382–389.Google Scholar
- 15.Haubold, A. (1977). Annals of the New York Academy of Sciences, 283, 383.Google Scholar
- 16.Goodman, S. L., Tweden, K. S., & Albrecht, R. M. (1996). Platelet interaction with pyrolytic carbon heart-valve leaflets. Journal of Biomedical Materials Research, 32, 249–258.Google Scholar
- 17.Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.Google Scholar
- 18.Williams, D. F. (1989). Journal of Biomedical Engineering, 11, 185.Google Scholar
- 19.Salzman, E. (Ed.). (1981). Interaction of blood with natural and artificial surfaces. New York: Marcel Dekker.Google Scholar
- 20.Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, & W.G. van Aken (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).Google Scholar
- 21.Cenni, E., Arciola, C. R., Ciapetti, G., Granchi, D., Savarino, L., Stea, S., et al. (1995). Biomaterials, 16, 973–976.Google Scholar
- 22.Herring, M. B., Gardner, A. & Gloves, J. A. (1978). Surgery, 84, 498.Google Scholar
- 23.Remy, M., Bordenave, L., Bareille, R., Rouais, F., Baquey, C., Gorodkov, A., et al. (1994). Journal of Materials Science Materials in Medicine, 5, 808.Google Scholar
- 24.Pesakova, V., Klezl, Z., Balik, K., & Adam, M. (2000). Journal of Material Science: Materials in Medicine, 11, p797.Google Scholar
- 25.Hallab, N. J., Bundy, K. J., O’Connor, K., Clark, R., & Moses, R. L. (1995) Journal of Long-Term Effects of Medical Implants, 5, 209.Google Scholar
- 26.Ahluwalia, A., Basta, G., Chiellini, F., Ricci, D., & Vozzi, G. (2001). Journal of Material Science: Materials in Medicine, 12, 613–619.Google Scholar
- 27.Bowlin, G. L., & Rittger, S. E. (1997). Cell Transplantation, 6, 623.Google Scholar
- 28.Altankov, G., & Grott, T. (1997). Journal of Biomaterials Science, Polymer Edition, 8, 299.Google Scholar
- 29.Grinnell, F. (1978). International Review of Cytology, 53, p65.Google Scholar
- 30.Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.Google Scholar
- 31.Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.Google Scholar
- 32.McLaughlin, J., Meenan, B., Maguire, P., & Jamieson, N. (1996). Properties of diamond like carbon thin film coatings on stainless steel medical guidewires. Diamond and Related Materials, 8, 486–491.Google Scholar
- 33.Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (1999). Hemocompatibility of DLC and TiC-TiN interlayers in titanium. Diamond and Related Materials, 8, 457–462.Google Scholar
- 34.Okpalugo, T. I. T., Ogwu, A. A., Maguire, P., & McLaughlin, J. A. D. (2001). Technology and health care. International Journal of Health Care Engineering, 9(1–2), 80–82.Google Scholar
- 35.Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & Hirst, D. G. (2004). In-vitro blood compatibility of a-C:H: Si and a-C: H thin films. Diamond and Related Materials, 13(4–8), 1088–1092.Google Scholar
- 36.Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., & McLaughlin, J. A. (2004). Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials, 25(3), 239–245.Google Scholar
- 37.Okpalugo, T. I. T., McKenna, E., Magee, A. C., McLaughlin, J. A., & Brown, N. M. D. (2004). The MTT assays of bovine retinal pericytes and human microvascular endothelial cells on DLC and Si-DLC-coated TCPS. Journal of Biomedical Materials Research, Part A, 71A(2), 201–208.Google Scholar
- 38.Okpalugo, T. I. T., Maguire, P. D., Ogwu, A. A., & McLaughlin, J. A. (2004). The effect of silicon doping and thermal annealing on the electrical and structural properties of hydrogenated amorphous carbon thin films. Diamond and Related Materials, 13(4–8), 1549–1552.Google Scholar
- 39.Okpalugo, T. I. T., Ogwu, A. A., Maguire, P. D., McLaughlin, J. A., & McCullough, R. W. (2006). Human micro-vascular endothelial cellular interaction with atomic N-doped compared to Si-doped DLC. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78B(2), 222–229.Google Scholar
- 40.Okpalugo, T. I. T. (2002). The hemocompatibility of ultra-smooth silicon and nitrogen doped hydrogenated amorphous carbon thin films—The role of the microstructure, electrical properties, and surface energy (G2c., Ph.D., Ulster, 53-4066). (BL: DXN062999).Google Scholar
- 41.Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.Google Scholar
- 42.Dion, I., Roques, X., Baquey, C., Baudet, E., Basse Cathalinat, B., & More, N. (1999). Biomedical Materials and Engineering, 3, 51–55 (spring).Google Scholar
- 43.O’Leary, A., Bowling, D. P., Donnelly, K., O’Brien, T. P., Kelly, T. C., Weill, N., et al. (1995). Key Engineering Materials, 99–100, 301–308.Google Scholar
- 44.Freitas, R. A., IMM report number 12. http://www.imm.org/reports/rep012.html
- 45.Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.Google Scholar
- 46.Allen, M. J., Myer, B. J., Law, F. C., & Rushton, N. (1995). Transaction of Orthopaedic Research Society, 20, 489.Google Scholar
- 47.Szent-Gyorgyi, A. (1957). Bioenergetics. New York: Academic Press.Google Scholar
- 48.Szent-Gyorgyi, A. (1946). Nature, 157, 875.Google Scholar
- 49.Eley, D. D., Parfitt, G. D., Perry, M. J., & Taysum, D. H. (1953). Transactions of the Faraday Society, 49, 79.Google Scholar
- 50.Postow, E., & Rosenberg, B. (1970). Bioenergetics, 1, 467.Google Scholar
- 51.Bruck, S. D. (1965). Polymer, 6, 319.Google Scholar
- 52.Bruck, S. D. (1967). Journal of Polymer Science Part C, 17, 169.Google Scholar
- 53.Bruck, S. D. (1973). Intrinsic semiconduction, electronic conduction of polymers and blood compatibility. Nature, 243, 416–417.CrossRefGoogle Scholar
- 54.Bruck, S. D. (1975). The role of electrical conduction of macromolecules in certain biomedical problems. Polymer, 16, 25.Google Scholar
- 55.Van Oss, C. J. (1978). Phagocytosis as a surface phenomenon. Annual Review of Microbiology, 32, 19–39.Google Scholar
- 56.Kochwa, S., Litwak, R. S., Rosenfield, R. E., & Leonard, E. F. (1977). Annals of New York Academy of Sciences, 283, 37.Google Scholar
- 57.Lettington, A. H. (1991). Applications of diamond films and related materials. In Y. Tzeng, et al (Ed.), Materials science monographs (Vol. 73, p. 703). New York: Elsevier.Google Scholar
- 58.Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.Google Scholar
- 59.Grill, A. (1999). Diamond and Related Materials, 8, 428.Google Scholar
- 60.Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.Google Scholar
- 61.Gutensohn, K., Beythien, C., Koester, R., Bau, J., Fenner, T., Grewe, P., et al. (2000). Infusionstherapie und Transfusionmedizin, 27(4), 200–206.Google Scholar
- 62.Zheng, C., Ran, J., Yin, G., & Lei, W. (1991). In Y. Tzeng, et al (Ed.), Applications of diamond films and related materials, materials science monographs (Vol. 73, p. 711). New York: Elsevier.Google Scholar
- 63.Jones, M. I., McColl, I. R., Grant, D. M., Parker, K. G., & Parker, T. L. (2000). Journal of Biomedical Materials Research, 52(2), 413–421.Google Scholar
- 64.Alanazi, A., Nojiri, C., Noguchi, T., et al. (2000). ASAIO Journal, 46(4), 440–443.Google Scholar
- 65.Alanazi, A., Nojiri, C., Noguchi, T., Ohgoe, Y., Matsuda, T., Hirakuri, K., et al. (2000). Artificial Organs, 24(8), 624–627.Google Scholar
- 66.Bangali, Z., & Shea, L. D. (2005). MRS Bulletin, 30(9), 659.Google Scholar
- 67.Morrison, M. L., Buchanan, R. A., Liaw, P. K., Berry, C. J., Brigmon, R. L., Riester, L., et al. (2006). Electrochemical and antimicrobial properties of diamond like carbon-metal composite films. Diamond and Related Materials, 15(1), 138–146.Google Scholar
- 68.Maizza, G., Saracco, G., & Abe, Y. (1999). Advances in science and technology. In Vincenzini, P. (Eds.), 9th Cimetec-World Forum on New Materials, Faenza (pp. 75–82).Google Scholar
- 69.Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.Google Scholar
- 70.Tiainen, V. M. (2001). Diamond and Related Materials, 10, 153–160.Google Scholar
- 71.Butter, R. S., & Lettington, A. H. (1995). DLC for biomedical applications (reviews). Journal of Chemical Vapor Deposition, 3, 182–192.Google Scholar
- 72.Higson, S. P. J., & Vadgama, P. M. (1995). Analytica Chemica Acta, 300, 77–83.Google Scholar
- 73.Higson, S. P. J., & Vadgama, P. M. (1995). Biosensors and Bioelectronics, 10(5), VIII.Google Scholar
- 74.Du, C., Su, X. W., Cui, F. Z., & Zhu, X. D. (1998). Biomaterials, 19, 651–658.Google Scholar
- 75.Cui, F. Z., & Li, D. J. (2000). Surface Coatings Technology, 131, 481–487.Google Scholar
- 76.Ivanov-Omskii, V. I., Panina, L. K., & Yastrebov, S. G. (2000). Carbon, 38, 495–499.Google Scholar
- 77.Dyuzhev, G. A., Ivanov-Omskii, V. I., Kuznetsova, E. K., Rumyantsev, V. D., et al (1996). Journal of Molecular Materials, 8, 103–106.Google Scholar
- 78.Ivanov-Omskii, V. I., Tolmatchev, A. V., & Yastrebov, S. G. (1996). Philosophical Magazine Part B, 73(4), 715–722.Google Scholar
- 79.Andrade, J. D. (Ed.). (1988). Surface and interfacial aspect of biomedical polymers. Protein Adsorption (Vol. 2). New York: Plenum.Google Scholar
- 80.William, D. F. (1985). Physiological and microbiological corrosion CRC Crit (review). Biocompatibility, 1, 1–30.Google Scholar
- 81.William, D. F. (Ed.) (1987). Definitions in biomaterials. Amsterdam: Elsevier.Google Scholar
- 82.William, D. F. (1981). Systemic aspects of biocompatibility (Vol. 1–2). Boca Raton: CRC Press.Google Scholar
- 83.Martini, F. C. (2001). Fundamentals of anatomy and physiology (5th ed.). New Jersey, USA: Prentice Hall.Google Scholar
- 84.Hoffman, A. S. (1982). Advances in Chemistry Series, 199, 3.Google Scholar
- 85.Vroman, L. (1977). Annals of the New York Academy of Science, 283, 65 (L. Vroman & E. F. Leonard (Eds.)).Google Scholar
- 86.National Heart, Lung, and Blood Institute (NHBLI). (1980). Clinical Guidelines for Biocompatibility. Washington D.C., USA.Google Scholar
- 87.Neumann, A. W., Absolom, D. R., Francis, D. W., Omenyi, S. N., Spelt, J. K., Policova, Z., et al. (1983). Annals of the New York Academy of Sciences, 416, 276.Google Scholar
- 88.Srinivasan, S., & Sawyer, P. N. (1970). Journal of Colloid and Interface Science, 32(3), 456.Google Scholar
- 89.Sawyer, P. N., & Pate, J. W. (1953). American Journal of Physiology, 175, 113.Google Scholar
- 90.Sawyer, P. N., & Srinavasan, S. (1967). American Journal of Physiology, 114, 42.Google Scholar
- 91.Srinivasan, S., & Sawyer, P. N. (1969). JAAMI, 3, 116.Google Scholar
- 92.Martin, J. G., Afshar, A., Kaplitt, M. J., Chopra, P. S., Srinivasan, S., & Sawyer, P. N. (1968). Implantation studies with some non-metallic prostheses. Transaction of American Society for Artificial Internal Organ, 14, 78.Google Scholar
- 93.Wilcox, C. D., Dove, S. B. McDavid, W. D., & Greer, D. B., Imagetool. http://ddsdx.uthscsa.edu/dig/itdesc
- 94.Baier, R. E. (1972). The Bulletin of the New York Academy of Medicine, 48, 273.Google Scholar
- 95.Baier, R. E., Loeb, G. I., & Wallace, G. T. (1971). Federation Proceedings, 30, 1523–1538.Google Scholar
- 96.Chen, J. Y., Leng, Y. X., Tian, X. B., Wang, L. P., Huang, N., Chu, P. K., et al. (2002). Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti (Ta + 5)O2 thin films. Biomaterials, 23, 2545.Google Scholar
- 97.Curtis, A. (2004). Tutorial on the biology of nanotopography. IEEE Transactions on Nanobioscience, 3(4), 293–295.MathSciNetGoogle Scholar
- 98.Matsuda, T., & Kurumatani, H. (1990). Surface induced in vitro angiogenesis: Surface property is a determinant of angio-genesis. ASAIO Transactions, 36, M565–M568.Google Scholar
- 99.Hubbell, J. A., Massia, S. P., & Drumheller, P. D. (1992). Surface-grafted cell-binding peptides in tissue engineering of vascular graft. Annals of the New York Academy of Sciences, 665, 253–258.Google Scholar
- 100.Goodman, S. L., Lelah, M. D., Lambrecht, L. K., Cooper, S. L., & Albrecht, R. M. (1984). Scanning Electron Microscopy, 1, 279.Google Scholar
- 101.Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., et al. (1997). Diamond and Related Materials, 6, 390–393.Google Scholar
- 102.Allen, M., Law, F. C., & Rushton, N. (1994). Clinical Materials, 17, p1–p10.Google Scholar
- 103.Hauert, R., Muller, U., Francz, G., Birchler, F., Schroeder, A., Mayer, J., et al. (1997). Thin Solid Films, 308–309, 191–194.Google Scholar
- 104.Allen, M., Butter, R., Chandra, L., Lettington, A., & Rushton, N. (1995). Biomedical Materials and Engineering, 5(3), 151–159.Google Scholar
- 105.McColl, I. R., Grant, D. M., Green, S. M., et al. (1993). Diamond and Related Materials, 3, 83.Google Scholar
- 106.Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1993). Diamond and Related Materials, 93, 118.Google Scholar
- 107.Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., & Wood, J. V. (1994). Diamond and Related Materials, 3, 1120–1123.Google Scholar
- 108.Thomson, L. A., Law, F. C., Rushton, N., & Franks, J. (1991). Biomaterials, 12, 37–40.Google Scholar
- 109.Allen, M., Myer, B., & Rushton, N. J. (2001). Journal of Biomedical Materials Research, 58(3), 319–328.Google Scholar
- 110.Schroeder, A., Francz, G., Bruinink, A., Hauert, R., Mayer, J., & Wintermantel, E. (2000). Biomaterials, 21, 449–456.Google Scholar
- 111.Lu, L., Jones, M. W., & Wu, R. L. C. (1993). Biomedical Materials and Engineering, 3, 223.Google Scholar
- 112.Evans, A. C., Franks, J., & Revell, P. J. (1991). Surface and Coatings Technology, 47, 662–667.Google Scholar
- 113.Ames, B. N., McCann, J., & Yamasaki, E. (1975). Mutation Research, 31, 347–367.Google Scholar
- 114.Bruck, S. D. (1977). Biomaterials, Medical Devices, and Artificial Organs, 5(1).Google Scholar
- 115.McHargue, C. J. (1991). In: Y. Tzeng et al. (Eds.), Application of diamond films and related materials, materials science monographs (p. 113). New York: Elsevier.Google Scholar
- 116.Devlin, D., et al. (1997). In: B. Simons (Ed.), Proceedings of the ASME International Mechanical Engineering Congress and Exposition (p. 265), Fairfield, NJ, USA: Bioengineering Division.Google Scholar
- 117.Gordon, J. L. (1986). In J. P. Cazenave, J. A. Davies, M. D. Kazatchkine, van Aken, W. G. (Eds.), Blood-surface interactions: Biological principles underlying hemocompatibility with artificial materials (p. 5). Amsterdam: Elsevier Science Publishers (Biomedical Division).Google Scholar
- 118.Moncada, S., & Vane, J. R. (1982). The role of prostaglandins in platelet-vessel wall interactions. In H. L. Nossel & H. J. Vogel (Eds.), Pathobiology of endothelial cells (pp. 253–285). New York: Academic Press.Google Scholar
- 119.Gimbrone, M. A., Jr. (1986). In M. A. Gimbrone Jr. (Ed.), Vascular endothelium in hemostasis and thrombosis (pp.1–13). Edinburgh: Churchill Livingstone.Google Scholar
- 120.Gimbrone, M. A, Jr. (1987). Annals of New York Acad. Sci., 516, 5–11.Google Scholar
- 121.Chan, T. K., & Chan, V. (1981). Antithrombin III, the major modulator of intravascular coagulation is synthesised by human endothelial cells. Thrombosis and Haemostasis, 46(1981), 504–506.Google Scholar
- 122.Busch, C., Ljungman, C., Heldin, C.-M., Waskson, E., & Obrink, B. (1979). Surface properties of cultured endothelial cells. Haemostasis, 8(1979), 142–148.Google Scholar
- 123.Jaffe, E. A. (1982). Synthesis of factor VIII by endothelial cells. Annals of New York Academy of Sciences, 401(1982), 163–170.Google Scholar
- 124.Mosher, D. F., Doyle, M. J., & Jaffe, E. A. (1982). Secretion and synthesis of thrombospondin by cultured human endothelial cells. Journal of Cell Biology, 93(1982), 343.Google Scholar
- 125.Folkman, J., & Haudenschild, C. (1980). Angiogenesis in vitro. Nature, 288, 551–556.Google Scholar
- 126.Tonnesen, M. G., Smedly, L. A., & Henson, P. M. (1984). The Journal of Clinical Investigation, 74, 1581–1592.Google Scholar
- 127.Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589–1598.Google Scholar
- 128.Pauli, B., & Lee, C. (1988). Laboratory Investigation, 58, 379–387.Google Scholar
- 129.Picker, L. J., Nakache, M., & Butcher, E. C. (1989). Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. Journal of Cell Biology, 109(2), 927–937.Google Scholar
- 130.Pober, J. (1988). American Journal of Pathology, 133, 426–433.Google Scholar
- 131.Berg, E. L., Goldstein, L. A., Jutila, M. A., Nakache, M., Picker, L. J., Streeter, P. R., et al. (1989). Immunological Reviews, 108, 1–18.Google Scholar
- 132.Rice, G. E., & Bevilacqua, M. P. (1989). Science, 246, 1303–1306.Google Scholar
- 133.Springer, T. (1990). Nature, 346, 425–433.Google Scholar
- 134.Hynes, R. (1992). Cell, 69, 11–25.Google Scholar
- 135.Folkman, J., Haudenschild, C., & Zetter, B. R. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76, 5217.Google Scholar
- 136.Keegan, A., Hill, C., Kumar, S., Phillips, P., Schof, A., & Weiss, J. (1982). Journal of Cell Science, 55, 261.Google Scholar
- 137.Charo, I., Karasek, M. A., Davison, P. M., & Goldstein, I. M. (1984). Journal of Clinical Investigation, 74, 914.Google Scholar
- 138.Gerritsen, M. E. (1987). Biochemical Pharmacology, 36, 2701–2711.Google Scholar
- 139.Fujimoto, T., & Singer, S. J. (1988). Journal of Histochemistry and Cytochemistry, 36, 1309–1317.Google Scholar
- 140.Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Journal of Cell Biology, 107, 1589.Google Scholar
- 141.Ades, E. W., Candal, F., Swerlick, J., George, R. A., Summers Susan, V. G., Bosse, D. C., et al. (1992). Journal of Investigative Dermatology, 99, 683–690.Google Scholar
- 142.Van Wachem, P. B., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J. P., & van Aken, W. G. (1985). Biomaterials, 6, 403–408.Google Scholar
- 143.Van Wachem, P. B., Schakenraad, J. M., Feijen, J., Beugeling, T., van Aken, W. G., Blaauw, E. H., et al. (1989). Biomaterials, 10, 532–539.Google Scholar
- 144.Kaukonen, M., Nieminen, R. M., Poykko, S., & Settsonen, A. (1999). Nitrogen doping of amorphous carbon surfaces. Physical Review Letters, 83(25), 5346–5349.Google Scholar
- 145.Ganong, W. F. (1995). Ganong’s review of medical physiology (17th ed.). New York: Appleton & Lang.Google Scholar
- 146.Chen, J. Y., Wang, L. P., Fu, K. Y., Huang, N., Leng, Y., Leng, Y. X., et al. (2002). Surface and Coatings Technology, 156, 289–294.Google Scholar
- 147.Krishnan, L. K., Varghese, N., Muraleedharan, C.V., Bhuvaneshwar, G.S., Derangere, F., Sampeur, Y., et al. (2002). Biomolecular Engineering, 1–3.Google Scholar
- 148.Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al. (2000). Thrombosis Research, 99, 577–585.Google Scholar
- 149.Ogwu, A. A., Lamberton, R. W., McLaughlin, J. A., & Maguire, P. D. (1999). Journal of Physics Part D. Applied Physics, 32, 981.Google Scholar
- 150.Jiu, J. T., Wang, H., Cao, C. B., & Zhu, H. S. (1999). Journal Materials Science, 34, 5205–5209.Google Scholar
- 151.Dementjev, A. P., Petukhov, M. N., & Baranov, A. M. (1998). Diamond and Related Materials, 7, 1534–1538.Google Scholar
- 152.Dementjev, A. P., & Petukhov, M. N. (1997). Diamond and Related Materials, 6, 486.Google Scholar
- 153.Grill, A., Meyerson, B., Patel, V., Reimer, J. A., & Petrich, M. A. (1987). Journal of Applied Physics, 61, 2874.Google Scholar
- 154.Miyake, S., Kaneko, R., Kikuya, Y., & Sugimoto, I. (1991). Transactions of the ASME Journal of Tribology, 113, 384.Google Scholar
- 155.Baker, M. A., & Hammer, P. (1997). Surface and Interface Analysis, 25, 629–642.Google Scholar
- 156.Demichelis, F., Pirri, C. F., & Tagliaferro, A. (1992). Materials Science and Engineering B, 11, 313–316.Google Scholar
- 157.Li, D. J., Cui, F. Z., Gu, H. Q., & Adhesion, J. (1999). Sci. Technol., 13, 169.Google Scholar
- 158.Linder, S., Pinkowski, W., & Aepfelbacher, M. (2002). Biomaterials, 23, 767–773.Google Scholar
- 159.Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1991). Journal of Biomaterials Science, Polymer Edition, 2(2), 147–159.Google Scholar
- 160.Tangen, D., Berman, H. J., & Marfey, P. (1971). Thrombosis et Diathesis Haemorrhagica, 25, 268.Google Scholar
- 161.Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1988). Cell Biophysics, 13, 75.Google Scholar
- 162.Goodman, S. L., Cooper, S. L., & Albrecht, R. M. (1985). In Y. Nose, C. Kjellstrand, & P. Ivanovich (Eds.) Progress in artificial organs (pp. 1050–1055). Cleveland, OH: ISAO Press.Google Scholar
- 163.Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., & Arends, J. (1986). Journal of Biomedical Materials Research, 20, 773.Google Scholar
- 164.Grinnell, F. (1987). Annals of the New York Academy of Sciences, 516, 280.Google Scholar
- 165.Grinnell, F. (1986). Journal of Cell Biology, 103, 2697.Google Scholar
- 166.Feuerstein, I. A. (1987). Annals of the New York Academy of Sciences, 516, 484Google Scholar
- 167.Park, K., & Park, H. (1989). Scanning Microscopy, 3(Suppl), 137.Google Scholar
- 168.Pitt, W. G., Spiegelberg, S. H., & Cooper, S. L. (1987). Transactions of the Society for Biomaterials, 10, 59.Google Scholar
- 169.Park, K., Mosher, D. F., & Cooper, S. L. (1985). Journal of Biomedical Materials Research, 20, 589.Google Scholar
- 170.Brash, J. L. (1985). Macromolecular Chemistry, 9(Suppl), 69.Google Scholar
- 171.Lambrecht, L. K., Young, B. R., Stafford, R. E., Park, K., Albrecht, R. M., Mosher, D. F., et al. (1986). Thrombosis Research, 41, 99.Google Scholar
- 172.Wildner, O., Lipkow, T., & Knop, J. (1992). Increased expression of ICAM-1, E-selectin and V-CAM-1 by cultured endothelial cells upon exposure to haptens. Experimental Dermatology, 1, 191.Google Scholar
- 173.Klein, C. L., Nieder, P., Wagner, M., Kohler, H., Bittinger, F., Kirkpatrick, C. J., et al. (1994). Journal of Pathophysiology, 5, 798–807.Google Scholar
- 174.Albelda, S., Smith, C., & Ward, P. (1994). Adhesion molecules and inflammatory injury. FASEB Journal, 8, 504–512.Google Scholar
- 175.Gerdes, J., Schwab, U., Lemke, H., & Stein, H. (1983). Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. International Journal of Cancer, 31(1), 13–20.Google Scholar
- 176.Thomas, W. E. (1999). Brain Research Reviews, 31(1), 42–57.Google Scholar
- 177.
- 178.Chen, X., & Zuckerman, S. T. (2005). Weiyuan John Kao. Intracellular protein phosphorylation in adherent U937 monocytes mediated by various culture conditions and fibronectin-derived surface ligands. Biomaterials, 26(8), 873–882.Google Scholar
- 179.Fournier, J. A., Calabuig, J., Merchán, A., Augé, J. M., Melgares, R., Colman, T., et al. (2001). Revista Espanola de Cardiologia, 54(5), 567–572.Google Scholar
- 180.De Scheerder, I., Szilard, M., Yanming, H., Ping, X. B., Verbeken, E., Neerinck, D., et al. (2000). The Journal of Invasive Cardiology, 12(8), 389–394.Google Scholar
- 181.Tran, H. S., Puc, M. M., Hewitt, C. W., Soll, D. B., Marra, S. W., Simonetti, V. A., et al. (1999). Journal of Investigative Surgery: The Official Journal of the Academy of Surgical Research, 12(3), 133–140.Google Scholar
- 182.
- 183.Izzard, C. S., & Lochner, L. R. (1976). Cell-to-substrate contacts in living fibroblasts: An interference reflection study with an evaluation of the technique. Journal of Cell Science, 21, 129.Google Scholar
- 184.Bereiter-Hahn, J., Fox, C. H., & Thorell, B. (1979). Quantitative reflection contrast microscopy of living cells. Journal of Cell Biology, 82, 767–779.Google Scholar
Copyright information
Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.