Bedside Neurologic Monitoring

  • Bryan J. Moore
  • Jose L. PascualEmail author


While in some centers, patients with neurologic emergencies may be admitted to a neurointensive care unit and cared for by neurointensivists, across most centers in the United States and Western Europe, such patients are admitted to general surgical or medical intensive care units. It is thus essential that all intensivists be familiar with the basic diagnostic tools and treatment pathways related to neurologic monitoring. This chapter will focus on the methods that providers can use to monitor neurological status in the intensive care setting.


Neurologic monitoring Monro-Kellie doctrine Cerebral blood flow Intracranial pressure Glasgow Coma Scale Electroencephalography Transcranial Doppler Cerebral blood flow Cerebral microdialysis 


  1. 1.
    Ishii S, Nagai H, Kasner M. Intracranial pressure V: proceedings of the fifth international symposium on intracranial pressure. Tokyo: Springer Science & Business Media; 1982. p. 298.Google Scholar
  2. 2.
    Chesnut RM. Intracranial pressure. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Elsevier Inc; 2013. p. 338–47.Google Scholar
  3. 3.
    Dobserstein C, Martin N. Cerebral blood flow in clinical neurosurgery. In: Youmans JR, Winn HR, editors. Youmans neurological surgery. 5th ed. Philadelphia: WB Saunders; 2004. p. 519–69.Google Scholar
  4. 4.
    Paulson OB, Waldemar G, Schmidt JF, Strandgaard S. Cerebral circulation under normal and pathologic conditions. Am J Cardiol. 1989;63(6):2C–5.CrossRefGoogle Scholar
  5. 5.
    Phillips SJ, Whisnant JP. Hypertension and the brain. The National High Blood Pressure Education Program. Arch Intern Med. 1992;152(5):938–45.CrossRefGoogle Scholar
  6. 6.
    Yoon S, Zuccarello M, Rapoport RM. pCO2 and pH regulation of cerebral blood flow. Front Physiol [Internet]. 2012;3:365.Google Scholar
  7. 7.
    Robinson BRH, Berube M, Barr J, Riker R, Gélinas C. Psychometric analysis of subjective sedation scales in critically ill adults. Crit Care Med [Internet]. 2013;41:S16–29.CrossRefGoogle Scholar
  8. 8.
    APPENDIX A: American Spinal Injury Association standard neurological classification of spinal cord injury. Contin Lifelong Learn Neurol [Internet]. 2011;17:644–5.Google Scholar
  9. 9.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med [Internet]. 2012;367(26):2471–81.CrossRefGoogle Scholar
  10. 10.
    Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J Trauma. 2005;58(1):47–50.CrossRefGoogle Scholar
  11. 11.
    Stocchetti N, Furlan A, Volta F. Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma. 1996;40(5):764–7.CrossRefGoogle Scholar
  12. 12.
    Fearnside MR, Cook RJ, McDougall P, McNeil RJ. The Westmead Head Injury Project outcome in severe head injury. A comparative analysis of pre-hospital, clinical and CT variables. Br J Neurosurg. 1993;7(3):267–79.CrossRefGoogle Scholar
  13. 13.
    Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. I. Blood pressure and oxygenation. J Neurotrauma. 2007;24 Suppl 1:S7–13.CrossRefGoogle Scholar
  14. 14.
    Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med [Internet]. 2013;39(8):1337–51.CrossRefGoogle Scholar
  15. 15.
    Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.CrossRefGoogle Scholar
  16. 16.
    Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67:203–10.CrossRefGoogle Scholar
  17. 17.
    Abend NS, Mani R, Tschuda TN, Chang T, Topjian AA, Donnelly M, et al. EEG monitoring during therapeutic hypothermia in neonates, children, and adults. Am J Electroneurodiagnostic Technol [Internet]. 2011;51(3):141–64.Google Scholar
  18. 18.
    Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, et al. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data. J Neurosurg [Internet]. 2014;120(6):1451–7.CrossRefGoogle Scholar
  19. 19.
    Krejza J, Arkuszewski M. Neurosonology. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Elsevier Inc.; 2013. p. 300–13.Google Scholar
  20. 20.
    Bouma GJ, Muizelaar JP. Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg. 1990;73(3):368–74.CrossRefGoogle Scholar
  21. 21.
    Strebel S, Lam AM, Matta BF, Newell DW. Impaired cerebral autoregulation after mild brain injury. Surg Neurol. 1997;47(2):128–31.CrossRefGoogle Scholar
  22. 22.
    Buczek J, Karlinski M, Kobayashi A, Bialek P, Czlonkowska A. Hyperperfusion syndrome after carotid endarterectomy and carotid stenting. Cerebrovasc Dis [Internet]. 2013;35(6):531–7.CrossRefGoogle Scholar
  23. 23.
    Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24 Suppl 1:S37–44.CrossRefGoogle Scholar
  24. 24.
    Kristiansson H, Nissborg E, Bartek J, Andresen M, Reinstrup P, Romner B. Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol [Internet]. 2013;25(4):372–85.CrossRefGoogle Scholar
  25. 25.
    Oddo M, Le Roux PD. Brain oxygen. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Elsevier Inc.; 2013. p. 348–55.Google Scholar
  26. 26.
    Chang JJJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, et al. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283–90.CrossRefGoogle Scholar
  27. 27.
    Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37(6):2057–63.CrossRefGoogle Scholar
  28. 28.
    Eriksson EA, Barletta JF, Figueroa BE, Bonnell BW, Vanderkolk WE, McAllen KJ, et al. Cerebral perfusion pressure and intracranial pressure are not surrogates for brain tissue oxygenation in traumatic brain injury. Clin Neurophysiol. 2012;123(6):1255–60.CrossRefGoogle Scholar
  29. 29.
    Gelabert-González M, Villa JM. Applications of the determination of brain tissue oxygen pressure (PtiO2). Rev Neurol. 2003;36(8):744–9.PubMedGoogle Scholar
  30. 30.
    Gupta AK, Hutchinson PJ, Al-Rawi P, Gupta S, Swart M, Kirkpatrick PJ, et al. Measuring brain tissue oxygenation compared with jugular venous oxygen saturation for monitoring cerebral oxygenation after traumatic brain injury. Anesth Analg. 1999;88(3):549–53.CrossRefGoogle Scholar
  31. 31.
    Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24 Suppl 1:S55–8.CrossRefGoogle Scholar
  32. 32.
    Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg. 1984;61(2):241–53.CrossRefGoogle Scholar
  33. 33.
    Vajkoczy P, Roth H, Horn P, Lucke T, Thomé C, Hubner U, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93(2):265–74.CrossRefGoogle Scholar
  34. 34.
    Hemedex Inc. Bowman perfusion monitor [internet]. Available from:
  35. 35.
    Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36:943–9.CrossRefGoogle Scholar
  36. 36.
    Coert BA, Chang SD, Marks MP, Steinberg GK. Revascularization of the posterior circulation. Skull Base [Internet]. 2005;15(01):43–62.CrossRefGoogle Scholar
  37. 37.
    Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8(2):121–7.CrossRefGoogle Scholar
  38. 38.
    Smith M. Cerebral microdialysis. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Elsevier Inc.; 2013. p. 356–66.Google Scholar
  39. 39.
    Matta BF, Menon DK, Smith M, editors. Brain tissue biochemistry. Core topics in neuroanaesthesia and neurointensive care. Cambridge: Cambridge University Press; 2011. p. 88.Google Scholar
  40. 40.
    Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Current protocols in neuroscience [internet]. Hoboken: Wiley; 2009.Google Scholar
  41. 41.
    Langemann H, Alessandri B, Mendelowitsch A, Feuerstein T, Landolt H, Gratzl O. Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res. 2001;23(5):531–6.CrossRefGoogle Scholar
  42. 42.
    Nilsson B, Norberg B, Siesjö BK. Biochemical events in cerebral ischaemia. Br J Anaesth. 1975;47(7):751–60.CrossRefGoogle Scholar
  43. 43.
    Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91(22):10625–9.CrossRefGoogle Scholar
  44. 44.
    Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain [Internet]. 2011;134(2):484–94.CrossRefGoogle Scholar
  45. 45.
    Sarrafzadeh A, Haux D, Küchler I, Lanksch WR, Unterberg AW. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg. 2004;100:400–6.CrossRefGoogle Scholar
  46. 46.
    Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64:486–91.CrossRefGoogle Scholar
  47. 47.
    Peerdeman SM, Girbes ARJ, Polderman KH, Vandertop WP. Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med. 2003;29(10):1825–8.CrossRefGoogle Scholar
  48. 48.
    Prakash A, Matta BF. Jugular bulb oximetry. In: Le Roux PR, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. Philadelphia: Elsevier Inc.; 2013. p. 320–6.Google Scholar
  49. 49.
    Steiner LA, Andrews PJD. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006;97:26–38.CrossRefGoogle Scholar
  50. 50.
    Mayberg TS, Lam AM. Jugular bulb oximetry for the monitoring of cerebral blood flow and metabolism. Neurosurg Clin N Am. 1996;7(4):755–65.CrossRefGoogle Scholar
  51. 51.
    Rohlwink UK, Figaji AA. Methods of monitoring brain oxygenation. Childs Nerv Syst. 2010;26:453–64.CrossRefGoogle Scholar
  52. 52.
    Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24(2):202–11.CrossRefGoogle Scholar
  53. 53.
    Van Santbrink H, Schouten JW, Steyerberg EW, Avezaat CJJ, Maas AIR. Serial transcranial doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien). 2002;144(11):1141–9.CrossRefGoogle Scholar
  54. 54.
    Macmillan CS, Andrews PJ. Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med. 2000;26(8):1028–36.CrossRefGoogle Scholar
  55. 55.
    Steiner LA, Coles JP, Czosnyka M, Minhas PS, Fryer TD, Aigbirhio FI, et al. Cerebrovascular pressure reactivity is related to global cerebral oxygen metabolism after head injury. J Neurol Neurosurg Psychiatry. 2003;74(6):765–70.CrossRefGoogle Scholar
  56. 56.
    Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;95(5):756–63.CrossRefGoogle Scholar
  57. 57.
    Steinmeier R, Bauhuf C, Hübner U, Bauer RD, Fahlbusch R, Laumer R, et al. Slow rhythmic oscillations of blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation. Dynamic interrelation and time course in humans. Stroke. 1996;27(12):2236–43.CrossRefGoogle Scholar
  58. 58.
    Badjatia N. Hyperthermia and fever control in brain injury. Crit Care Med. 2009;37(7 Suppl):S250–7.CrossRefGoogle Scholar
  59. 59.
    Corps K, Roth T, McGavern D. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;72(3):355–62.CrossRefGoogle Scholar
  60. 60.
    Stocchetti N, Zanier ER. Brain temperature. In: Le Roux PD, Levine JM, Kofke WA, editors. Monitoring in neurocritical care. Philadelphia: Elsevier Inc.; 2013. p. 367–71.Google Scholar
  61. 61.
    Dietrich WD, Chatzipanteli K, Vitarbo E, Wada K, Kinoshita K. The role of inflammatory processes in the pathophysiology and treatment of brain and spinal cord trauma. Acta Neurochir Suppl. 2004;89:69–74.PubMedGoogle Scholar
  62. 62.
    Bao L, Chen D, Ding L, Ling W, Xu F. Fever burden is an independent predictor for prognosis of traumatic brain injury. PLoS One. 2014;9(3):e90956.CrossRefGoogle Scholar
  63. 63.
    Greer DM, Funk SE, Reaven NL, Ouzounelli M, Uman GC. Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis. Stroke. 2008;39(11):3029–35.CrossRefGoogle Scholar
  64. 64.
    Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive Care Med. 2007;33:1263–71.CrossRefGoogle Scholar
  65. 65.
    Al-Rawi PG. Near infrared spectroscopy in brain injury: today’s perspective. Acta Neurochir Suppl. 2005;95:453–7.CrossRefGoogle Scholar
  66. 66.
    Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J Neurosurg. 1995;83(6):963–70.CrossRefGoogle Scholar
  67. 67.
    Rosenthal ES. The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care. Neurotherapeutics. 2012;9(1):24–36.CrossRefGoogle Scholar
  68. 68.
    Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960–7.CrossRefGoogle Scholar
  69. 69.
    Amantini A, Fossi S, Grippo A, Innocenti P, Amadori A, Bucciardini L, et al. Continuous EEG-SEP monitoring in severe brain injury. Neurophysiol Clin. 2009;39(2):85–93.CrossRefGoogle Scholar
  70. 70.
    Freye E. Cerebral monitoring in the operating room and the intensive care unit – an introductory for the clinician and a guide for the novice wanting to open a window to the brain. J Clin Monit Comput. 2005;19(1–2):77–168.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Neurocritical CareHospital of the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of SurgeryPenn Presbyterian Medical CenterPhiladelphiaUSA

Personalised recommendations