Light-Emitting Electrochemical Cells

  • Chia-Yu Cheng
  • Hai-Ching SuEmail author
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


Recently, solid-state light-emitting electrochemical cells (LECs) have attracted intense attention due to simple device structure, low operation voltage and high power efficiency. Compatibility with simple solution processes and superior device efficiency are beneficial in display and lighting applications. In this chapter, the working mechanism of LECs is introduced and some previous important works on LECs, such as LECs with various emission colors, topics on device lifetime and turn-on time of LECs and novel device technologies on LEC device structures are reviewed. Finally, conclusions and outlooks for LECs are discussed.


Ionic Liquid High Occupied Molecular Orbital Power Efficiency Emissive Layer Iridium Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Color conversion layer


Commission Internationale de L’Eclairage


Color rendering index


Electrochemical doping




Electric double layers




External quantum efficiency


Full width at half maximum


Highest occupied molecular orbital


Ionic transition metal complexes


Light-emitting electrochemical cells


Lowest unoccupied molecular orbital


Metal-to-ligand charge transfer




Organic light-emitting diodes


Polymer light-emitting electrochemical cells


Photoluminescent quantum yield


Scanning Kelvin probe microscopy


White light-emitting electrochemical cells


  1. 1.
    Pei Q, Yu G, Zhang C et al (1995) Science 269:1086PubMedGoogle Scholar
  2. 2.
    Gao J, Dane J (2003) Appl Phys Lett 83:3027Google Scholar
  3. 3.
    Dane J, Tracy C, Gao J (2005) Appl Phys Lett 86:153509Google Scholar
  4. 4.
    Dane J, Gao J (2004) Appl Phys Lett 85:3905Google Scholar
  5. 5.
    Shin JH, Matyba P, Robinson ND et al (2007) Electrochim Acta 52:6456Google Scholar
  6. 6.
    Matyba P, Maturova K, Kemerink M et al (2009) Nat Mater 8:672PubMedGoogle Scholar
  7. 7.
    Rodovsky DB, Reid OG, Pingree LS et al (2010) ACS Nano 4:2673PubMedGoogle Scholar
  8. 8.
    Edman L (2005) Electrochim Acta 50:3878Google Scholar
  9. 9.
    Sun Q, Li Y, Pei Q (2007) IEEE/OSA J Disp Technol 3:211Google Scholar
  10. 10.
    Yang C, Sun Q, Qiao J et al (2003) J Phys Chem B 107:12981Google Scholar
  11. 11.
    Pingree LS, Rodovsky DB, Coffey DC et al (2007) J Am Chem Soc 129:15903PubMedGoogle Scholar
  12. 12.
    Slinker JD, Defranco JA, Jaquith MJ et al (2007) Nat Mater 6:894PubMedGoogle Scholar
  13. 13.
    Pei Q, Heeger AJ (2008) Nat Mater 7:167PubMedGoogle Scholar
  14. 14.
    Hu Y, Gao J (2011) J Am Chem Soc 133:2227PubMedGoogle Scholar
  15. 15.
    Van Reenen S, Matyba P, Dzwilewski A et al (2010) J Am Chem Soc 132:13776PubMedGoogle Scholar
  16. 16.
    Rudmann H, Shimada S, Rubner MF (2003) J Appl Phys 94:115Google Scholar
  17. 17.
    Li Y, Gao J, Yu G et al (1998) Chem Phys Lett 287:83Google Scholar
  18. 18.
    Lenes M, Garcia‐Belmonte G, Tordera D et al (2011) Adv Funct Mater 21:1581Google Scholar
  19. 19.
    Ng WY, Gong X, Chan WK (1999) Chem Mater 11:1165Google Scholar
  20. 20.
    Suzuki H (2000) Appl Phys Lett 76:1543Google Scholar
  21. 21.
    Suzuki H (2004) J Photochem Photobiol A Chem 166:155Google Scholar
  22. 22.
    Hosseini AR, Koh CY, Slinker JD et al (2005) Chem Mater 17:6114Google Scholar
  23. 23.
    Bolink HJ, Cappelli L, Coronado E et al (2005) Inorg Chem 44:5966PubMedGoogle Scholar
  24. 24.
    Wang S, Li X, Xun S et al (2006) Macromolecules 39:7502Google Scholar
  25. 25.
    Xun S, Zhang J, Li X et al (2008) Synth Met 158:484Google Scholar
  26. 26.
    Bolink HJ, Coronado E, Costa RD et al (2009) Inorg Chem 48:3907PubMedGoogle Scholar
  27. 27.
    Ho CC, Chen HF, Ho YC et al (2011) Phys Chem Chem Phys 13:17729PubMedGoogle Scholar
  28. 28.
    Lee CL, Cheng CY, Su HC (2014) Org Electron 15:711Google Scholar
  29. 29.
    Tamayo AB, Garon S, Sajoto T et al (2005) Inorg Chem 44:8723PubMedGoogle Scholar
  30. 30.
    Su HC, Chen HF, Fang FC et al (2008) J Am Chem Soc 130:3413PubMedGoogle Scholar
  31. 31.
    He L, Qiao J, Duan L et al (2009) Adv Funct Mater 19:2950Google Scholar
  32. 32.
    Rodríguez-Redondo JL, Costa RD, Ortí E et al (2009) Dalton Trans 9787Google Scholar
  33. 33.
    Chen HF, Wong KT, Liu YH et al (2011) J Mater Chem 21:768Google Scholar
  34. 34.
    Costa RD, Céspedes-Guirao FJ, Ortí E et al (2009) Chem Commun 3886Google Scholar
  35. 35.
    Chen FC, Yang Y, Pei Q (2002) Appl Phys Lett 81:4278Google Scholar
  36. 36.
    Su HC, Lin YH, Chang CH et al (2010) J Mater Chem 20:5521Google Scholar
  37. 37.
    Costa RD, Ortí E, Bolink HJ et al (2009) Adv Funct Mater 19:3456Google Scholar
  38. 38.
    Su HC, Fang FC, Hwu TY et al (2007) Adv Funct Mater 17:1019Google Scholar
  39. 39.
    Su HC, Wu CC, Fang FC et al (2006) Appl Phys Lett 89:261118Google Scholar
  40. 40.
    Slinker JD, Gorodetsky AA, Lowry MS et al (2004) J Am Chem Soc 126:2763PubMedGoogle Scholar
  41. 41.
    Slinker JD, Koh CY, Malliaras GG et al (2005) Appl Phys Lett 86:173506Google Scholar
  42. 42.
    Lowry MS, Goldsmith JI, Slinker JD et al (2005) Chem Mater 17:5712Google Scholar
  43. 43.
    Bolink HJ, Cappelli L, Coronado E et al (2006) Chem Mater 18:2778Google Scholar
  44. 44.
    Yang Y, Pei Q (1996) Appl Phys Lett 68:2708Google Scholar
  45. 45.
    Fang J, Matyba P, Edman L (2009) Adv Funct Mater 19:2671Google Scholar
  46. 46.
    Yang Y, Pei Q (1997) J Appl Phys 81:3294Google Scholar
  47. 47.
    Yu Z, Wang M, Lei G et al (2011) J Phys Chem Lett 2:367Google Scholar
  48. 48.
    Slinker JD, Rivnay J, Moskowitz JS et al (2007) J Mater Chem 17:2976Google Scholar
  49. 49.
    Terki R, Simoneau L-P, Rochefort A (2008) J Phys Chem A 113:534Google Scholar
  50. 50.
    He L, Duan L, Qiao J et al (2008) Adv Funct Mater 18:2123Google Scholar
  51. 51.
    He L, Duan L, Qiao J et al (2010) Chem Mater 22:3535Google Scholar
  52. 52.
    Mydlak M, Bizzarri C, Hartmann D et al (2010) Adv Funct Mater 20:1812Google Scholar
  53. 53.
    Bolink HJ, Cappelli L, Cheylan S et al (2007) J Mater Chem 17:5032Google Scholar
  54. 54.
    Yang CH, Beltran J, Lemaur V et al (2010) Inorg Chem 49:9891PubMedGoogle Scholar
  55. 55.
    Chen HF, Liao CT, Chen TC et al (2011) J Mater Chem 21:4175Google Scholar
  56. 56.
    Cimrová V, Schmidt W, Rulkens R et al (1996) Adv Mater 8:585Google Scholar
  57. 57.
    Chen HF, Liao CT, Kuo MC et al (2012) Org Electron 13:1765Google Scholar
  58. 58.
    Sun M, Zhong C, Li F et al (2010) Macromolecules 43:1714Google Scholar
  59. 59.
    Tang S, Pan J, Buchholz H et al (2011) ACS Appl Mater Interfaces 3:3384PubMedGoogle Scholar
  60. 60.
    Tang S, Pan J, Buchholz HA et al (2013) J Am Chem Soc 135:3647PubMedGoogle Scholar
  61. 61.
    Tsai CS, Yang SH, Liu BC et al (2013) Org Electron 14:488Google Scholar
  62. 62.
    Su HC, Chen HF, Shen YC et al (2011) J Mater Chem 21:9653Google Scholar
  63. 63.
    Chen B, Li Y, Chu Y et al (2013) Org Electron 14:744Google Scholar
  64. 64.
    Shao Y, Bazan GC, Heeger AJ (2007) Adv Mater 19:365Google Scholar
  65. 65.
    Wågberg T, Hania PR, Robinson ND et al (2008) Adv Mater 20:1744Google Scholar
  66. 66.
    Fang J, Matyba P, Robinson ND et al (2008) J Am Chem Soc 130:4562PubMedGoogle Scholar
  67. 67.
    Zhang Y, Gao J (2006) J Appl Phys 100:084501Google Scholar
  68. 68.
    Kalyuzhny G, Buda M, Mcneill J et al (2003) J Am Chem Soc 125:6272PubMedGoogle Scholar
  69. 69.
    Zhao W, Liu CY, Wang Q et al (2005) Chem Mater 17:6403Google Scholar
  70. 70.
    Bolink HJ, Coronado E, Costa RD et al (2008) Adv Mater 20:3910Google Scholar
  71. 71.
    Lee K, Slinker J, Gorodetsky A et al (2003) Phys Chem Chem Phys 5:2706Google Scholar
  72. 72.
    Buda M, Kalyuzhny G, Bard AJ (2002) J Am Chem Soc 124:6090PubMedGoogle Scholar
  73. 73.
    Zysman-Colman E, Slinker JD, Parker JB et al (2007) Chem Mater 20:388Google Scholar
  74. 74.
    Su HC, Chen HF, Wu CC et al (2008) Chem Asian J 3:1922PubMedGoogle Scholar
  75. 75.
    Kwon TH, Oh YH, Shin IS et al (2009) Adv Funct Mater 19:711Google Scholar
  76. 76.
    Parker ST, Slinker JD, Lowry MS et al (2005) Chem Mater 17:3187Google Scholar
  77. 77.
    Costa RD, Pertegás A, Ortí E et al (2010) Chem Mater 22:1288Google Scholar
  78. 78.
    Rudmann H, Rubner M (2001) J Appl Phys 90:4338Google Scholar
  79. 79.
    Rudmann H, Shimada S, Rubner MF (2002) J Am Chem Soc 124:4918PubMedGoogle Scholar
  80. 80.
    Tordera D, Meier S, Lenes M et al (2012) Adv Mater 24:897PubMedGoogle Scholar
  81. 81.
    Lu JS, Kuo JC, Su HC (2013) Org Electron 14:3379Google Scholar
  82. 82.
    Wang TW, Su HC (2013) Org Electron 14:2269Google Scholar
  83. 83.
    Jhang YP, Chen HF, Wu HB et al (2013) Org Electron 14:2424Google Scholar
  84. 84.
    Lin GR, Chen HF, Shih HC et al (2015) Phys Chem Chem Phys 17:6956PubMedGoogle Scholar
  85. 85.
    Chutinan A, Ishihara K, Asano T et al (2005) Org Electron 6:3Google Scholar
  86. 86.
    Kaihovirta N, Larsen C, Edman L (2014) ACS Appl Mater Interfaces 6:2940PubMedGoogle Scholar
  87. 87.
    Lu JS, Chen HF, Kuo JC et al (2015) J Mater Chem C 3:2802Google Scholar
  88. 88.
    Cheng CY, Wang CW, Cheng JR et al (2015) J Mater Chem C 3:5665Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Lighting and Energy PhotonicsNational Chiao Tung UniversityTainanTaiwan

Personalised recommendations