Solar Energy Conversion in Photoelectrochemical Systems

  • Stefano CaramoriEmail author
  • Federico Ronconi
  • Roberto Argazzi
  • Stefano Carli
  • Rita Boaretto
  • Eva Busatto
  • Carlo Alberto Bignozzi
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


The organization of photoresponsive molecular systems and nano-materials on semiconductor surface holds great potential in the building of solar energy conversion devices where efficient energy conversion results from the optimized cooperation of several subsystems (semiconductor, dye sensitizers, redox mediator, hole transport medium), whose properties can be finely tuned through rational synthetic design. This chapter will review the fundamentals of semiconductor sensitization, a process relying on the quenching by charge transfer of molecular excited states coupled to semiconductor surfaces, and will move on by describing the structural and electronic properties of some of the most successful dye designs, used in conjunction with new electron transfer mediators in liquid electrolytes. From liquid electrolytes, a step forward is made by developing solid state hole conductors, which found their best employment in hybrid junctions with organo-halide lead perovskites, representing, at present, the most promising materials for solar-to-electric power conversion in mesoscopic solar cells. Finally, one of the most challenging tasks which can find solution by exploiting molecular level sensitized materials is discussed in detail through meaningful case studies: the production of solar fuels by photoelectrochemical water splitting.


Solar Cell Atomic Layer Deposition Power Conversion Efficiency Electron Injection Electron Transfer Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tan MX, Laibnis PE, Nguyen ST, Kesselman JM, Stanton CE, Lewis NS (1994) Progress in inorganic chemistry, vol 41. Wiley, New York, pp 21–144Google Scholar
  2. 2.
    Gerischer H (1980) Pure Appl Chem 52:2649–2667Google Scholar
  3. 3.
    Hannay NB (1959) Semiconductors. Reinhold Publishing Corporation, New YorkGoogle Scholar
  4. 4.
    Becquerel E (1839) Compt Rendus 9:561–567Google Scholar
  5. 5.
    Desilvestro J, Grätzel M, Kavan L, Moser J, Augustynski J (1985) J Am Chem Soc 107:2988–2990Google Scholar
  6. 6.
    O’Regan B, Grätzel M (1991) Nature 353:737–740Google Scholar
  7. 7.
    Gerischer H, Tributsch H (1968) Ber Bunsenges Phys Chem 72:437–445Google Scholar
  8. 8.
    Memming R (1984) Prog Surf Sci 17:7–73Google Scholar
  9. 9.
    Grätzel M (2005) Inorg Chem 44:6841–6851PubMedGoogle Scholar
  10. 10.
    Wenger B, Grätzel M, Moser J-E (2005) J Am Chem Soc 127:12150–12151PubMedGoogle Scholar
  11. 11.
    Moser JE, Grätzel M (1993) Chem Phys 176:493–500Google Scholar
  12. 12.
    Bauer C, Boschloo G, Mukhtar E, Hagfeldt A (2002) J Phys Chem B 106:12693–12704Google Scholar
  13. 13.
    Gardner JM, Giaimuccio JM, Meyer GJ (2008) J Am Chem Soc 130:17252–17253PubMedGoogle Scholar
  14. 14.
    Marton A, Clark CC, Srinivasan R, Freundlich RE, Narducci-Sarjeant, Meyer GJ (2006) Inorg Chem 45:362–369PubMedGoogle Scholar
  15. 15.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Chem Commun 51:15894–15897Google Scholar
  16. 16.
    Argazzi R, Bignozzi CA, Heimer TA, Castellano FN, Meyer GJ (1995) J Am Chem Soc 117:11815–11816Google Scholar
  17. 17.
    Wang Q, Moser J-E, Grätzel M (2005) J Phys Chem B 109:14945–14953PubMedGoogle Scholar
  18. 18.
    Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Sol Energy Mater Sol Cells 87:117–131Google Scholar
  19. 19.
    Hardin BE, Snaith HJ, McGehee MD (2012) Nat Photonics 6:162–169Google Scholar
  20. 20.
    Calogero G, Di Marco G, Caramori S, Cazzanti S, Argazzi R, Bignozzi CA (2009) Energy Environ Sci 2:1162–1172Google Scholar
  21. 21.
    Calogero G, Yum J-H, Sinopoli A, Di Marco G, Grätzel M, Nazeeruddin MK (2012) Sol Energy 86:1563–1575Google Scholar
  22. 22.
    Fantacci S, De Angelis F (2011) Coord Chem Rev 255:2704–2726Google Scholar
  23. 23.
    O’Regan BC, Durrant JR (2009) Acc Chem Res 42:1799–1808PubMedGoogle Scholar
  24. 24.
    Imahori H, Umeyama T, Ito S (2009) Acc Chem Res 42:1809–1818PubMedGoogle Scholar
  25. 25.
    Cid J-J, Yum J-H, Jang S-R, Nazeeruddin MK, Martínez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Angew Chem Int Ed 46:8358–8362Google Scholar
  26. 26.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624PubMedGoogle Scholar
  27. 27.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Science 334:629–634PubMedGoogle Scholar
  28. 28.
    Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) Acc Chem Res 43:1063–1071PubMedPubMedCentralGoogle Scholar
  29. 29.
    Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Coord Chem Rev 256:2414–2423Google Scholar
  30. 30.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390Google Scholar
  31. 31.
    Hagfeldt A, Grätzel M (1995) Chem Rev 95:49–68Google Scholar
  32. 32.
    Argazzi R, Murakami Iha NY, Zabri H, Odobel F, Bignozzi CA (2004) Coord Chem Rev 248:1299–1316Google Scholar
  33. 33.
    Nazeeruddin MK, Zakeeruddin SM, Lagref JJ, Liska P, Comte P, Barolo C, Viscardi G, Schenk K, Grätzel M (2004) Coord Chem Rev 248:1317–1328Google Scholar
  34. 34.
    Polo AS, Itokazu MK, Murakami Iha NY (2004) Coord Chem Rev 248:1343–1361Google Scholar
  35. 35.
    Meyer GJ (2005) Inorg Chem 44:6852–6864PubMedGoogle Scholar
  36. 36.
    Robertson N (2006) Angew Chem Int Ed 45:2338–2345Google Scholar
  37. 37.
    Xie P, Guo F (2007) Curr Org Chem 11:1272–1286Google Scholar
  38. 38.
    Cecchet F, Gioacchini AM, Marcaccio M, Paolucci F, Roffia S, Alebbi M, Bignozzi CA (2002) J Phys Chem B 106:3926–3932Google Scholar
  39. 39.
    Nour-Mohhamadi F, Nguyen SD, Boschloo G, Hagfeldt A, Lund T (2005) J Phys Chem B 109:22413–22419PubMedGoogle Scholar
  40. 40.
    Nguyen HT, Ta HM, Lund T (2007) Sol Energy Mater Sol Cells 91:1934–1942Google Scholar
  41. 41.
    Agresti A, Pescetelli S, Quatela A, Mastroianni S, Brown TM, Reale A, Bignozzi CA, Caramori S, Di Carlo A (2014) RSC Adv 4:12366–12375Google Scholar
  42. 42.
    Harikisun R, Desilvestro H (2011) Sol Energy 85:1179–1188Google Scholar
  43. 43.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C-H, Grätzel M (1999) Inorg Chem 38:6298–6305Google Scholar
  44. 44.
    Islam A, Sugihara H, Yanagida M, Hara K, Fujihashi G, Tachibana Y, Katoh R, Murata S, Arakawa H (2002) N J Chem 26:966–968Google Scholar
  45. 45.
    Bomben PG, Robson KCD, Koivisto BD, Berlinguette CP (2012) Coord Chem Rev 256:1438–1450Google Scholar
  46. 46.
    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) J Am Chem Soc 131:5930–5934PubMedGoogle Scholar
  47. 47.
    Kinoshita T, Dy JT, Uchida S, Kubo T, Segawa H (2013) Nat Photonics 7:535–539Google Scholar
  48. 48.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663PubMedGoogle Scholar
  49. 49.
    Ooyama Y, Harima Y (2009) Eur J Org Chem 2009:2903–2934Google Scholar
  50. 50.
    Hara K, Kurashige M, Ito S, Shinpo A, Suga S, Sayama K, Arakawa H (2003) Chem Commun 252–253Google Scholar
  51. 51.
    Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806–1812Google Scholar
  52. 52.
    Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H (2001) Chem Commun 569–570Google Scholar
  53. 53.
    Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H (2002) J Phys Chem B 106:1363–1371Google Scholar
  54. 54.
    Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J-E, Humphry-Baker R, Zakeeruddin SM, Grätzel M, Bäuerle P (2012) Adv Funct Mater 22:1291–1302Google Scholar
  55. 55.
    Do K, Kim D, Cho N, Paek S, Song K, Ko J (2012) Org Lett 14:222–225PubMedGoogle Scholar
  56. 56.
    Choi H, Baik KC, Kang SO, Ko J, Kang M-S, Nazeeruddin MK, Grätzel M (2008) Angew Chem Int Ed 47:327–330Google Scholar
  57. 57.
    Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Pechy P, Takata M, Miura H, Uchida S, Grätzel M (2006) Adv Mater 18:1202–1205Google Scholar
  58. 58.
    Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Grätzel M (2008) Chem Commun 5194–5196Google Scholar
  59. 59.
    Wu S-L, Lu H-P, Yu H-T, Chuang S-H, Chiu C-L, Lee C-W, Diau EW-G, Yeh C-Y (2010) Energy Environ Sci 3:949–955Google Scholar
  60. 60.
    Lee C-W, Lu H-P, Lan C-M, Huang Y-L, Liang Y-R, Yen W-N, Liu Y-C, Lin Y-S, Diau EW-G, Yeh C-Y (2009) Chem Eur J 15:1403–1412PubMedGoogle Scholar
  61. 61.
    Di Carlo G, Caramori S, Trifilletti V, Giannuzzi R, De Marco L, Pizzotti M, Orbelli Biroli A, Tessore F, Argazzi R, Bignozzi CA (2014) ACS Appl Mater Interf 6:15841–15852Google Scholar
  62. 62.
    Barea EM, Gónzalez-Pedro V, Ripollés-Sanchis T, Wu H-P, Li L-L, Yeh C-Y, Diau EW-G, Bisquert J (2011) J Phys Chem C 115:10898–10902Google Scholar
  63. 63.
    Gregg BA, Pichot F, Ferrere S, Fields CL (2001) J Phys Chem B 105:1422–1429Google Scholar
  64. 64.
    Gregg BA (2004) Coord Chem Rev 248:1215–1224Google Scholar
  65. 65.
    Pichot F, Gregg BA (2000) J Phys Chem B 104:6–10Google Scholar
  66. 66.
    Heimer TA, Heilweil EJ, Bignozzi CA, Meyer GJ (2000) J Phys Chem A 104:4256–4262Google Scholar
  67. 67.
    Montanari I, Nelson J, Durrant JR (2002) J Phys Chem B 106:12203–12210Google Scholar
  68. 68.
    Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) J Phys Chem B 101:8141–8155Google Scholar
  69. 69.
    Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) J Phys Chem B 101:2576–2582Google Scholar
  70. 70.
    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N (2004) J Photochem Photobiol Part A: Chem 164:193–198Google Scholar
  71. 71.
    Hanke KP (1999) Z Phys Chem 212:1Google Scholar
  72. 72.
    Meyer TJ, Taube H (1987) In: Wilkinson G (ed) Comprehensive coordination chemistry: the synthesis, reactions, properties and applications of coordination compounds, vol 1. Pergamon Press, Oxford, p 331Google Scholar
  73. 73.
    Nusbaumer H, Moser J-E, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2001) J Phys Chem B 105:10461–10464Google Scholar
  74. 74.
    Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA (2002) J Am Chem Soc 124:11215–11222PubMedGoogle Scholar
  75. 75.
    Ghamouss F, Pitson R, Odobel F, Boujtita M, Caramori S, Bignozzi CA (2010) Electrochim Acta 55:6517–6522Google Scholar
  76. 76.
    Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Giménez S (2009) J Phys Chem C 113:17278–17290Google Scholar
  77. 77.
    Wang P, Zakeeruddin SM, Comte P, Charvet R, Humphry-Baker R, Grätzel M (2003) J Phys Chem B 107:14336–14341Google Scholar
  78. 78.
    Klein C, Nazeeruddin MK, Di Censo D, Liska P, Grätzel M (2004) Inorg Chem 43:4216–4226PubMedGoogle Scholar
  79. 79.
    Carli S, Casarin L, Caramori S, Boaretto R, Busatto E, Argazzi R, Bignozzi CA (2014) Polyhedron 82:173–180Google Scholar
  80. 80.
    Liberatore M, Burtone L, Brown TM, Reale A, Di Carlo A, Decker F, Caramori S, Bignozzi CA (2009) Appl Phys Lett 94:173113Google Scholar
  81. 81.
    Nelson JJ, Amick TJ, Elliott CM (2008) J Phys Chem C 112:18255–18263Google Scholar
  82. 82.
    Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A (2010) J Am Chem Soc 132:16714–16724PubMedGoogle Scholar
  83. 83.
    Tsao HN, Yi C, Moehl T, Yum J-H, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2011) ChemSusChem 4:591–594PubMedGoogle Scholar
  84. 84.
    Yum J-H, Baranoff E, Kessler T, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Grätzel M (2012) Nat Commun 3:1–8, Article number 631Google Scholar
  85. 85.
    Hattori S, Wada Y, Yanagida S, Fukuzumi S (2005) J Am Chem Soc 127:9648–9654PubMedGoogle Scholar
  86. 86.
    Bai Y, Yu Q, Cai N, Wang Y, Zhang M, Wang P (2011) Chem Commun 47:4376–4378Google Scholar
  87. 87.
    Li TC, Spokoyny AM, She C, Farha OK, Mirkin CA, Marks TJ, Hupp JT (2010) J Am Chem Soc 132:4580–4582PubMedGoogle Scholar
  88. 88.
    Daeneke T, Kwon T-H, Holmes AB, Duffy NW, Bach U, Spiccia L (2011) Nat Chem 3:211–215PubMedGoogle Scholar
  89. 89.
    Zotti G, Schiavon G, Zecchin S, Favretto D (1998) J Electroanal Chem 456:217–221Google Scholar
  90. 90.
    Hurvois JP, Moinet C (2005) J Organomet Chem 690:1829–1839Google Scholar
  91. 91.
    Tennakone K, Kumara GRRA, Kumarasinghe AR, Wijayantha KGU, Sirimanne PM (1995) Semicond Sci Technol 10:1689Google Scholar
  92. 92.
    Kumarasinghe AR, Flavell WR, Thomas AG, Mallick AK, Tsoutsou D, Chatwin C, Rayner S, Kirkham P, Warren S, Patel S, Christian P, O’Brien P, Grätzel M, Hengerer R (2007) J Chem Phys 127:114703PubMedGoogle Scholar
  93. 93.
    Kumara GRA, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K (2002) Chem Mater 14:954–955Google Scholar
  94. 94.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 395:583–585Google Scholar
  95. 95.
    Murakoshi K, Kogure R, Wada Y, Yanagida S (1998) Sol Energy Mater Sol Cells 55:113–125Google Scholar
  96. 96.
    Kim Y, Sung Y-E, Xia J-B, Lira-Cantu M, Masaki N, Yanagida S (2008) J Photochem Photobiol A Chem 193:77–80Google Scholar
  97. 97.
    Yang L, Zhang J, Shen Y, Park B-W, Bi D, Häggman L, Johansson EMJ, Boschloo G, Hagfeldt A, Vlachopoulos N, Snedden A, Kloo L, Jarboui A, Chams A, Perruchot C, Jouini M (2013) J Phys Chem Lett 4:4026–4031Google Scholar
  98. 98.
    Aitola K, Zhang J, Vlachopoulos N, Halme J, Kaskela A, Nasibulin A, Kauppinen E, Boschloo G, Hagfeldt A (2015) J Solid State Electrochem 19:3139–3144 Google Scholar
  99. 99.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) J Am Chem Soc 131:6050–6051PubMedGoogle Scholar
  100. 100.
    Weber ZD (1978) Naturforsch B 33:1443–1445Google Scholar
  101. 101.
    Mitzi DB, Field CA, Harrison WTA, Guloy AM (1994) Nature 369:467–469Google Scholar
  102. 102.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Prog Photovolt Res Appl 23:1–9Google Scholar
  103. 103.
    Mitzi DB (1999) Prog Inorg Chem 48:1–121Google Scholar
  104. 104.
    Shannon RD (1976) Acta Crystallogr Sect A 32:751–767Google Scholar
  105. 105.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Inorg Chem 52:9019–9038PubMedGoogle Scholar
  106. 106.
    Mitzi DB (2001) J Chem Soc Dalton Trans 1:1–12Google Scholar
  107. 107.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Science 342:344–347PubMedPubMedCentralGoogle Scholar
  108. 108.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Science 342:341–344PubMedGoogle Scholar
  109. 109.
    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwak Y, Hodes G, Cahen D (2014) Nano Lett 14:1000–1004PubMedGoogle Scholar
  110. 110.
    Cheng Z, Lin J (2010) CrystEngComm 12:2646–2662Google Scholar
  111. 111.
    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N (2003) Solid State Commun 127:619–623Google Scholar
  112. 112.
    Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Humphry-Baker R, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Sci Rep 2:1–7Google Scholar
  113. 113.
    Kitazawa N, Watanabe Y, Nakamura Y (2002) J Mater Sci 37:3585–3587Google Scholar
  114. 114.
    Mosconi E, Grätzel M, Amat A, Nazeeruddin MK, De Angelis F (2013) J Phys Chem 117:13902–13913Google Scholar
  115. 115.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Nano Lett 13:1764–1769PubMedGoogle Scholar
  116. 116.
    Im J-H, Chung J, Kim S-J, Park N-G (2012) Nanoscale Res Lett 7:353PubMedPubMedCentralGoogle Scholar
  117. 117.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LB, Snaith HJ (2014) Energy Environ Sci 7:982–988Google Scholar
  118. 118.
    Kitazawa N, Enomoto K, Aono M, Watanabe Y (2004) J Mater Sci 39:749–751Google Scholar
  119. 119.
    Era M, Hattori T, Taira T, Tsutsui T (1997) Chem Mater 9:8–10Google Scholar
  120. 120.
    Liang KN, Mitzi DB, Prikas MT (1998) Chem Mater 10:403–411Google Scholar
  121. 121.
    Xia YN, Whitesides GM (1998) Annu Rev Mater Sci 28:153–184Google Scholar
  122. 122.
    Bi D, Häggman L, Boschloo G, Yang L, Johansson EMJ, Hagfeldt A (2013) RSC Adv 3:18762–18766Google Scholar
  123. 123.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Science 338:643–647PubMedGoogle Scholar
  124. 124.
    Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) J Am Chem Soc 134:17396–17399Google Scholar
  125. 125.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Nature 499:316–320PubMedPubMedCentralGoogle Scholar
  126. 126.
    Snaith HJ, Humphry-Baker R, Chen P, Cesar I, Zakeeruddin SM, Grätzel M (2008) Nanotechnology 19:424003PubMedGoogle Scholar
  127. 127.
    Kyriazi JM, Ding I-K, Marchioro A, Punzi A, Hardin BE, Burkhard GF, Tétreault N, Grätzel M, Moser J-E, McGehee MD (2011) Adv Energy Mater 1:407–414Google Scholar
  128. 128.
    Abrusci A, Ding I-K, Al-Hashimi M, Segal-Peretz T, McGehee MD, Heeney M, Frey GL, Snaith HJ (2011) Energy Environ Sci 4:3051–3058Google Scholar
  129. 129.
    Ding I-K, Tétreault N, Brillet J, Hardin BE, Smith EH, Rosenthal SJ, Sauvage F, Grätzel M, McGehee MD (2009) Adv Funct Mater 19:2431–2436Google Scholar
  130. 130.
    Docampo P, Hey A, Guldin S, Gunning R, Steiner U, Snaith HJ (2012) Adv Funct Mater 22:5010–5019Google Scholar
  131. 131.
    Snaith HJ (2010) Adv Funct Mater 20:13–19Google Scholar
  132. 132.
    Hao F, Stoumpos CC, Cao DH, Chang RPH, Kanatzidis MG (2014) Nat Photonics 8:489–494Google Scholar
  133. 133.
    Christians JA, Herrera PAM, Kamat PV (2015) J Am Chem Soc 137:1530–1538PubMedGoogle Scholar
  134. 134.
    Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) J Phys Chem Lett 6:432–437PubMedGoogle Scholar
  135. 135.
    Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Nano Lett 14:5561–5568PubMedGoogle Scholar
  136. 136.
    Song W, Chen Z, Brennaman MK, Concepcion JJ, Patrocinio AOT, Iha NYM, Meyer TJ (2011) Pure Appl Chem 83:749–768Google Scholar
  137. 137.
    Yachandra VK, Sauer K, Klein MP (1996) Chem Rev 96:2927–2950PubMedGoogle Scholar
  138. 138.
    Renger G, Renger T (2008) Photosynth Res 98:53–80PubMedGoogle Scholar
  139. 139.
    Meyer TJ, Huynh MHV, Thorp HH (2007) Angew Chem Int Ed 46:5284–5304Google Scholar
  140. 140.
    McEvoy JP, Brudvig GW (2006) Chem Rev 106:4455–4483PubMedGoogle Scholar
  141. 141.
    Kern J, Renger G (2007) Photosynth Res 94:183–202PubMedGoogle Scholar
  142. 142.
    Dau H, Zaharieva I (2009) Acc Chem Res 42:1861–1870PubMedGoogle Scholar
  143. 143.
    Brudvig GW (2008) Philos Trans R Soc B Biol Sci 363:1211–1219Google Scholar
  144. 144.
    Barber J, Andersson B (1994) Nature 370:31–34Google Scholar
  145. 145.
    Barber J (2006) Biochem Soc Trans 34:619–631PubMedGoogle Scholar
  146. 146.
    Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3–16Google Scholar
  147. 147.
    Hammarström L (2015) Acc Chem Res 48:840–850PubMedGoogle Scholar
  148. 148.
    Young KJ, Martini LA, Milot RL, Snoeberger RC III, Batista VS, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2012) Coord Chem Rev 256:2503–2520PubMedPubMedCentralGoogle Scholar
  149. 149.
    Youngblood WJ, Lee S-HA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) J Am Chem Soc 131:926–927PubMedPubMedCentralGoogle Scholar
  150. 150.
    Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) Chem Commun 46:7307–7309Google Scholar
  151. 151.
    Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) J Am Chem Soc 132:2892–2894PubMedGoogle Scholar
  152. 152.
    Gillaizeau-Gauthier I, Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi CA, Qu P, Meyer GJ (2001) Inorg Chem 40:6073–6079PubMedGoogle Scholar
  153. 153.
    Wasielewski MR (1992) Chem Rev 92:435–461Google Scholar
  154. 154.
    Gould SL, Kodis G, Palacios RE, de la Garza L, Brune A, Gust D, Moore TA, Moore AL (2004) J Phys Chem B 108:10566–10580Google Scholar
  155. 155.
    Liddell PA, Kuciauskas D, Sumida JP, Nash B, Nguyen D, Moore AL, Moore TA, Gust D (1997) J Am Chem Soc 119:1400–1405Google Scholar
  156. 156.
    Moore GF, Blakemore JD, Milot RL, Hull JF, Song H-e, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2011) Energy Environ Sci 4:2389–2392Google Scholar
  157. 157.
    Moore GF, Konezny SJ, Song H-e, Milot RL, Blakemore JD, Lee ML, Batista VS, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2012) J Phys Chem C 116:4892–4902Google Scholar
  158. 158.
    Swierk JR, Méndez-Hernández DD, McCool NS, Liddell P, Terazono Y, Pahk I, Tomlin JJ, Oster NV, Moore TA, Moore AL, Gust D, Mallouk TE (2015) Proc Natl Acad Sci 112:1681–1686PubMedGoogle Scholar
  159. 159.
    Kärkäs MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863–12001PubMedPubMedCentralGoogle Scholar
  160. 160.
    Blakemore JD, Crabtree RH, Brudvig GW (2015) Chem Rev 115:12974–13005Google Scholar
  161. 161.
    Gersten SW, Samuels GJ, Meyer TJ (1982) J Am Chem Soc 104:4029–4030Google Scholar
  162. 162.
    Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107:3855–3864Google Scholar
  163. 163.
    Sens C, Romero I, Rodríguez M, Llobet A, Parella T, Benet-Buchholz J (2004) J Am Chem Soc 126:7798–7799PubMedGoogle Scholar
  164. 164.
    Zong R, Thummel RP (2005) J Am Chem Soc 127:12802–12803PubMedGoogle Scholar
  165. 165.
    Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130:16462–16463PubMedPubMedCentralGoogle Scholar
  166. 166.
    Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Murakami Iha NY, Templeton JL, Meyer TJ (2009) Acc Chem Res 42:1954–1965PubMedGoogle Scholar
  167. 167.
    Yoshida M, Masaoka S, Sakai K (2009) Chem Lett 38:702–703Google Scholar
  168. 168.
    Hocking RK, Brimblecombe R, Chang L-Y, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Nat Chem 3:461–466PubMedGoogle Scholar
  169. 169.
    Alibabaei L, Brennaman MK, Norris MR, Kalanyan B, Song W, Losego MD, Concepcion JJ, Binstead RA, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci 110:20008–20013PubMedGoogle Scholar
  170. 170.
    Alibabaei L, Sherman BD, Norris MR, Brennaman MK, Meyer TJ (2015) Proc Natl Acad Sci 112:5899–5902PubMedGoogle Scholar
  171. 171.
    Vannucci AK, Alibabaei L, Losego MD, Concepcion JJ, Kalanyan B, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci 110:20918–209225PubMedGoogle Scholar
  172. 172.
    Hanson K, Torelli DA, Vannucci AK, Brennaman MK, Luo H, Alibabaei L, Song W, Ashford DL, Norris MR, Glasson CRK, Concepcion JJ, Meyer TJ (2012) Angew Chem Int Ed 51:12782–12785Google Scholar
  173. 173.
    Ding X, Gao Y, Zhang L, Yu Z, Liu J, Sun L (2014) ACS Catal 4:2347–2350Google Scholar
  174. 174.
    Kirner JT, Stracke JJ, Gregg BA, Finke RG (2014) ACS Appl Mater Interf 6:13367–13377Google Scholar
  175. 175.
    Ronconi F, Syrgiannis Z, Bonasera A, Prato M, Argazzi R, Caramori S, Cristino V, Bignozzi CA (2015) J Am Chem Soc 137:4630–4633PubMedGoogle Scholar
  176. 176.
    Li F, Fan K, Xu B, Gabrielsson E, Daniel Q, Li L, Sun L (2015) J Am Chem Soc 137:9153–9159PubMedPubMedCentralGoogle Scholar
  177. 177.
    Qin P, Zhu H, Edvinsson T, Boschloo G, Hagfeldt A, Sun L (2008) J Am Chem Soc 130:8570–8571PubMedGoogle Scholar
  178. 178.
    Yu Z, Li F, Sun L (2015) Energy Environ Sci 8:760–775Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Caramori
    • 1
    Email author
  • Federico Ronconi
    • 1
  • Roberto Argazzi
    • 1
  • Stefano Carli
    • 1
  • Rita Boaretto
    • 1
  • Eva Busatto
    • 1
  • Carlo Alberto Bignozzi
    • 1
  1. 1.Department of Chemistry and Pharmaceutical SciencesUniversity of FerraraFerraraItaly

Personalised recommendations