Photochemistry for Cultural Heritage

  • Maria João MeloEmail author
  • Joana Lia Ferreira
  • António Jorge Parola
  • João Sérgio Seixas de Melo
Part of the Lecture Notes in Chemistry book series (LNC, volume 92)


Why do certain ancient natural dyes, such as indigo, preserve their colour so well while others, like brazilein, seem to degrade much faster? And how did mauveine change the world of colour? Will modern binding media, as vinyl paints, perform as well as a medieval tempera? Will it be possible to predict their durability? Photochemistry can answer many important questions about materials’ stability, providing new tools for the conservation of treasured artworks.

In this chapter, photochemistry emerges as an important contribution to the understanding of those complex processes, providing fascinating insights into a world of colour and light.


Vinyl Acetate Indigo Carmine Carminic Acid Metal Soap Emulsion Paint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wouters J (2008) Protecting cultural heritage: reflections on the position of science in multidisciplinary approaches. Chem Int 30:4–7Google Scholar
  2. 2.
    Brunetti BG, Sgamellotti A, Clark AJ (2010) Advanced techniques in art conservation (Editorial). Acc Chem Res 43:693–694PubMedGoogle Scholar
  3. 3.
    Balzani V, Scandola F (1991) Supramolecular photochemistry. Ellis Horwood, ChichesterGoogle Scholar
  4. 4.
    Melo MJ (2009) History of natural dyes in the ancient mediterranean world. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. Wiley, Chichester, pp 3–18Google Scholar
  5. 5.
    Cardon D (2007) Natural dyes. Sources, tradition, technology and science. Archetype Publications, LondonGoogle Scholar
  6. 6.
    Vitorino T, Melo MJ, Carlyle L, Otero V (2015) New insights into brazilwood manufacture through the use of historically accurate reconstructions. Stud Conserv. doi: 10.1179/2047058415Y.0000000006 CrossRefGoogle Scholar
  7. 7.
    Halleux R (ed) (2002) Les alchimistes grecs: papyrus de Leyde, papyrus de Stockholm, recettes. Les Belles Lettres, ParisGoogle Scholar
  8. 8.
    Kroustallis S (2011) Binding media in medieval manuscript illumination: a source of research. Rev Hist Arte FCSH-UNL Sér W 1:113–125Google Scholar
  9. 9.
    Melo MJ, Castro R, Miranda A (2014) Colour in medieval portuguese manuscripts: between beauty and meaning. In: Sgamellotti A, Brunetti BG, Miliani C (eds) Science and art: the painted surface. The Royal Society of Chemistry, LondonGoogle Scholar
  10. 10.
    Balfour-Paul J (2000) Indigo. British Museum Press, LondonGoogle Scholar
  11. 11.
    Seixas de Melo JS, Moura AP, Melo MJ (2004) Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J Phys Chem A 108:6975–6981Google Scholar
  12. 12.
    Sousa MM, Miguel C, Rodrigues I, Parola AJ, Pina F, Seixas de Melo JS, Melo MJ (2008) A photochemical study on the blue dye indigo: from solution to ancient Andean textiles. Photochem Photobiol Sci 7:1353–1359PubMedGoogle Scholar
  13. 13.
    Meijer L, Guyard N, Skaltsounis LA, Eisenbrand G (eds) (2006) Indirubin, the red shade of indigo. Life in Progress, RoscoffGoogle Scholar
  14. 14.
    Baeyer A, Drewson V (1882) Darstellung von Indigblau aus Orthonitrobenzaldehyd. Ber Dtsch Chem Ges 15(2):2856–2864Google Scholar
  15. 15.
    de Meijere A (2005) Adolf von Baeyer: winner of the nobel prize for chemistry 1905. Angew Chem Int Ed 44(48):7836–7840Google Scholar
  16. 16.
    Reis A, Schneider W (1928) On the crystal structure of indigo and fumaric acid. Z Kristall 68(6):543–566Google Scholar
  17. 17.
    Cooksey CJ (2001) Tyrian purple: 6,6′-dibromoindigo and related compounds. Molecules 6:736–769PubMedCentralGoogle Scholar
  18. 18.
    Wyman GM (1994) Reminescences of an accidental photochemist. EPA News Lett 50:9–13Google Scholar
  19. 19.
    Bauer H, Kowski K, Kuhn H, Luttke W, Rademacher P (1998) Photoelectron spectra and electronic structures of some indigo dyes. J Mol Struct 445(1–3):277–286Google Scholar
  20. 20.
    Wille E, Luttke W (1971) Theoretical and spectroscopic studies on Indigo Dyes. 9. 4,4,4′,4′-Tetramethyl-Delta2,2′-Bipyrrolidine-3,3′-Dione, a compound having basic chromophore system of Indigo. Angew Chem Int Ed 10(11):803–804Google Scholar
  21. 21.
    Elsaesser T, Kaiser W, Luttke W (1986) Picosecond spectroscopy of intramolecular hydrogen bonds in 4,4′,7,7′-tetramethyllndigo. J Phys Chem 90:2901–2905Google Scholar
  22. 22.
    Klessinger M (1982) The origin of the color of indigo dyes. Dyes Pigm 3(2–3):235–241Google Scholar
  23. 23.
    Klessinger M (1980) Captodative substituent effects and the chromophoric system of indigo. Angew Chem Int Ed Engl 19(11):908–909Google Scholar
  24. 24.
    Jacquemin D, Preat J, Wathelet V, Perpete EA (2006) Substitution and chemical environment effects on the absorption spectrum of indigo. J Chem Phys 124(7):074104Google Scholar
  25. 25.
    Miliani C, Romani A, Favaro G (1998) A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectecrochim Acta A Mol Biomol Spectr 54:581–588Google Scholar
  26. 26.
    Seixas de Melo JS, Serpa C, Burrows HD, Arnaut LG (2007) The triplet state of indigo. Angew Chem Int Ed Engl 46:2094–2096PubMedGoogle Scholar
  27. 27.
    Seixas de Melo JS, Rondão R, Burrows HD, Melo MJ, Navaratnam S, Edge R, Voss G (2006) Spectral and photophysical studies of substituted Indigo derivatives in their Keto forms. Chem Phys Chem 7:2303–2311Google Scholar
  28. 28.
    a) Nagasawa Y, Taguri R, Matsuda H, Murakami M, Ohama M, Okada T, Miyasaka H (2004) The effect of hydrogen-bonding on the ultrafast electronic deactivation dynamics of indigo carmine. Phys Chem Chem Phys 6(23):5370–5378; b) Iwakura I, Yabushita A, Kobayashi T (2011) Transition state in a prevented proton transfer observed in real time. Bull Chem Soc Jap 84(2):164–171Google Scholar
  29. 29.
    Kleinermanns K, Nachtigallová D, de Vries MS (2013) Excited state dynamics of DNA bases. Int Rev Phys Chem 32(2):308–342Google Scholar
  30. 30.
    a) Claro A, Melo MJ, Seixas de Melo JS, van den Berg KJ, Burnstock A, Montague M, Newman R (2010) Identification of red colorants in cultural heritage by microspectrofluorimetry. J Cult Herit 11:27–34; b) Melo MJ, Claro A (2010) Bright light: microspectrofluorimetry for the characterization of lake pigments and dyes in works of art Acc Chem Res 43: 857–866Google Scholar
  31. 31.
    Paul A (ed) (1991) Paracas art & architecture, object and context in South Coastal. University of Iowa Press, PeruGoogle Scholar
  32. 32.
    Frank AT, Adenike A, Aebisher D, Greer A, Gao R, Liebman JF (2007) Paradigms and paradoxes: energetics of the oxidative cleavage of indigo and of other olefins. Struct Chem 18(1):71–74Google Scholar
  33. 33.
    Kettle AJ, Clark BM, Winterbourn CC (2004) Superoxide converts indigo carmine to isatin sulfonic acid. Implications for the hypothesis that neutrophils produce ozone. J Biol Chem 279:18521–18525PubMedGoogle Scholar
  34. 34.
    Srividya N, Paramavisan G, Seetharaman K, Ramamurthy P (1994) Two-step reduction of indigo carmine by dithionite: a stopped-flow study. J Chem Soc Faraday Trans 90:2525–2530Google Scholar
  35. 35.
    Bond AM, Marken F, Hill E, Compton RG, Hügel H (1997) The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans 2:1735–1742Google Scholar
  36. 36.
    Melo MJ, Otero V, Vitorino T, Araújo R, Muralha VSF, Lemos A, Picollo M (2014) Three books of hours from the 15th century: a multi-analytical and interdisciplinary approach. Appl Spec 68:434–444Google Scholar
  37. 37.
  38. 38.
    Rondão R, Seixas de Melo JS, Melo MJ, Vitorino T, Parola AJ (2013) Brazilwood Reds: the (Photo)chemistry of Brazilin and Brazilein. J Phys Chem A 117:10650–10660PubMedGoogle Scholar
  39. 39.
    Melo MJ, Sousa MM, Parola AJ, Seixas de Melo JS, Catarino F, Marçalo J, Pina F (2007) Identification of 7,4′-dihydroxy-5-methoxyflavylium in “Dragon’s blood”. To be or not to be an anthocyanin. Chem Eur J 13:1417–1422PubMedGoogle Scholar
  40. 40.
    Pina F, Melo MJ, Laia CAT, Parola AJ, Lima JC (2012) Chemistry and applications of Flavylium compounds: a handful of colours. Chem Soc Rev 41:869–908PubMedGoogle Scholar
  41. 41.
    Otero V, Carlyle L, Vilarigues M, Melo MJ (2012) Chrome yellow in nineteenth century art: historic reconstructions of an artists’ pigment. RSC Adv 2:1798–1805Google Scholar
  42. 42.
    Sousa MM, Melo MJ, Parola AJ, Morris PJT, Rzepa HS, Seixas de Melo JS (2008) A study in Mauve: unveiling Perkin’s Dye in historic samples. Chem Eur J 14:8507–8513PubMedGoogle Scholar
  43. 43.
    Perkin WH (1906) Address of Sir Silliam Henry Perkin. Science 24:488–493Google Scholar
  44. 44.
    Garfield S (2002) MAUVE. How one man invented a color that changed the world. W. W. Norton & Company, New YorkGoogle Scholar
  45. 45.
    Travis AS (2007) Mauve, its impact, and its anniversaries. Bull Hist Chem 32:35–44Google Scholar
  46. 46.
    Meth-Cohn O, Smith M (1994) What did Perkin, W.H. Actually make when he oxidized aniline to obtain mauveine. J Chem Soc Perkin Trans 1:5–7Google Scholar
  47. 47.
    Seixas de Melo J, Takato S, Sousa MM, Melo MJ, Parola AJ (2007) Revisiting Perkin’s dyes(s): the spectroscopy and photophysics of two new mauveine compounds (B2 and C). Chem Commun 2624–2626Google Scholar
  48. 48.
    Otero V, Sanches D, Montagner C, Lopes JA, Vilarigues M, Carlyle L, Melo MJ (2014) In situ characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J Raman Spectrosc 45:1197–1206Google Scholar
  49. 49.
    Boon J, Hoogland FG, Keune K (2007) Chemical processes in aged oil paints affecting metal soap migration and aggregation. In: Mar Parkin, H (ed) 34th annual meeting of the American Institute for Conservation of Historic & Artistic Works, Providence June 2006. AIC Paintings Specialty Group Postprints, vol 19. American Institute for Conservation, Washington p 16Google Scholar
  50. 50.
    Morgan J (1993) A joint project on the conservation of plastics by the conservation unit and the Plastics Historical Society. In: Grattan DW (ed) Saving the twentieth-century: the conservation of modern materials: Proceedings of Symposium 9, Ottawa, September 1991. Canadian Conservation Institute, Otawa, p 43Google Scholar
  51. 51.
    Crook J, Learner T (2000) The impact of modern paints. Tate Gallery Publishing Ltd, LondonGoogle Scholar
  52. 52.
    Sonoda N, Rioux JP (1990) Identification des matériaux synthétiques dans les peintures modernes. I. Vernis et liants polyméres. Stud Conserv 35:189–204Google Scholar
  53. 53.
    Chiantore O, Rava A (2012) Conserving contemporary art – issues, methods, material and research. The Getty Conservation Institute, Los AngelesGoogle Scholar
  54. 54.
    Ferreira JL, Ávila MJ, Melo MJ, Ramos AM (2013) Early aqueous dispersions paints: Portuguese artist’s use of poly(vinyl acetate) 1960s–1990s. Stud Conserv 58:211–225Google Scholar
  55. 55.
    Mancusi-Ungaro C (1982) A technical note on IKB. In: Yves Klein, 1928–1962: a retrospective, exhibition catalogue. Institute for the Arts, Rice University, Houston p 258Google Scholar
  56. 56.
    Croll S (2007) Overview of developments in the paint industry since 1930. In: Learner TJS, Smithen P, Krueger JW, Schilling MR (eds) Proceedings from the Symposium Modern Paints Uncovered, London May 2006. Getty Publications, Los Angeles, p 17Google Scholar
  57. 57.
    Ferreira JL, Ramos AM, Melo MJ (2010) PVAc paints in works of art: a photochemical approach – part 1. Polym Degrad Stabil 95:453–461Google Scholar
  58. 58.
    Lemaire J, Gardette J, Lacoste J, Delprat P, Vaillant D (1996) Mechanisms of photo-oxidation of polyolefins: prediction of lifetime in weathering conditions. In: Clough RL, Billingham NC, Gillen KT (eds) Polymer durability: degradation, stabilization and lifetime predictions. American Chemical Society, Boston, pp 577–598Google Scholar
  59. 59.
    Pospίšil J, Pilař J, Billingham NC, Marek A, Horák Z, Nešpůrek S (2006) Factors affecting accelerated testing of polymer stability. Polym Degrad Stabil 91:417–422Google Scholar
  60. 60.
    Allen NS, Edge M (1992) Fundamentals of polymer degradation and stabilization. Elsevier, LondonGoogle Scholar
  61. 61.
    Rabek J (1995) Polymer photodegradation: mechanisms and experimental methods. Chapman & Hall, LondonGoogle Scholar
  62. 62.
    Fox RF (1997) Photodegradation of high polymers. In: Jenkins AD (ed) Progress in polymer science, vol 1. Pergamon, London, p 45Google Scholar
  63. 63.
    Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of photochemistry, 3rd edn. Taylor & Francis, Boca RatonGoogle Scholar
  64. 64.
    David C, Borsu M, Geuskens G (1970) Photolysis and radiolysis of polyvinyl acetate. Eur Polym J 6:959–963Google Scholar
  65. 65.
    Buchanan KJ, McGill WJ (1980) Photodegradation of poly(vinyl esters) – II: volatile product formation and changes in the absorption spectra and molecular mass distributions. Eur Polym J 16:313–318Google Scholar
  66. 66.
    Cotte M, Susini J, Dik J, Janssens K (2010) Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria João Melo
    • 1
    Email author
  • Joana Lia Ferreira
    • 1
  • António Jorge Parola
    • 1
  • João Sérgio Seixas de Melo
    • 2
  1. 1.LAQV-REQUIMTE, Department of Conservation and Restoration and Department of Chemistry, Faculty of Science and TechnologyUniversidade NOVA de LisboaLisbonPortugal
  2. 2.CQC, Department of ChemistryUniversity of CoimbraRua LargaPortugal

Personalised recommendations