Advertisement

Photorefractives for Holographic Interferometry and Nondestructive Testing

  • Marc GeorgesEmail author
Chapter
  • 616 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)

Abstract

Thanks to its high sensitivity to displacement, holography is very well suited for metrology. In the case of holographic interferometry (HI), interference occurs between the object wavefront and a wavefront reconstructed by a hologram allowing a comparison between different objects, or different states of the same object. This chapter first discusses the importance of HI compared to other techniques such as electronic or computer based interferometry, then the author is developing various methodologies for holographic metrology, including real time, double exposure, and time averaged HI. Material considerations are covered and the specific case of photorefractive polymer and crystals are analyzed. Several experiments of nondestructive testing on industrial systems are discussed with measurement configurations relevant for thermal analysis, vibration, defect detection, and even historic artifact investigation.

Keywords

Holographic Interferometry Object Wave Digital Holography Electronic Speckle Pattern Interferometry Hologram Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kreis, T.: Handbook of Holographic Interferometry—Optical and Digital Methods. Wiley-VCH, Weinheim (2005)Google Scholar
  2. 2.
    Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)Google Scholar
  3. 3.
    Picart, P., Gross, M., Marquet, P.: Basic fundamentals of digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 1–66. Wiley/ISTE, London (2015)Google Scholar
  4. 4.
    Jones, R., Wykes, C.: Holographic and Speckle Interferometry, 2nd edn. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  5. 5.
    Georges, M.: Long-wave infrared digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 219–254. Wiley/ISTE, London (2015)Google Scholar
  6. 6.
    Picart, P.: Holography: non-contact and optical non-destructive testing applications, In: Optics 4 Engineers, Online Courses. http://www.optique-ingenieur.org/en/courses/OPI_ang_M02_C11/co/OPI_ang_M02_C11_web.html (2009). Accessed 30 Mar 2009
  7. 7.
    Nakadate, S., Saito, H., Nakajima, T.: Vibration measurement using phase-shifting stroboscopic holographic interferometry. Opt. Acta 33(10), 1295–1309 (1986)CrossRefGoogle Scholar
  8. 8.
    Robinson, D.W., Reid, G.T.: Interferogram Analysis: Digital Fringe Pattern Measurement Techniques. Institute of Physics, London (1993)Google Scholar
  9. 9.
    Frejlich, J.: Photorefractive Materials. Fundamental Concepts, Holographic Recording and Materials Characterization. Wiley, Hoboken (2007)Google Scholar
  10. 10.
    Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)CrossRefGoogle Scholar
  11. 11.
    Lemaire, P., Georges, M.: Dynamic holographic interferometry: devices and applications. In: Günther, P., Huignard, J.-P. (eds.) Photorefractive Materials and Their Applications 3. Applications, pp. 223–251. Springer, New York (2007)Google Scholar
  12. 12.
    Petrov, M., Stepanov, S., Khomenko, A.: Photorefractive crystals in coherent optical systems. In: Springer Series in Optical Sciences, vol. 59. Springer, Berlin (1991)Google Scholar
  13. 13.
    Delaye, P., Jonathan, J.M., Pauliat, G., Roosen, G.: Photorefractive materials: specifications relevant to applications. Pure Appl. Opt. 5, 541–559 (1996)CrossRefGoogle Scholar
  14. 14.
    Hafiz, A., Magnusson, R., Bagby, J., Wilson, D., Black, T.: Visualization of aerodynamic flow using photorefractive crystals. Appl. Opt. 28(8), 1521–1524 (1989)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Magnusson, R., Haji-Sheikh, A.: Real-time interferometry with photorefractive reference holograms. Appl. Opt. 32(11), 1983–1986 (1993)CrossRefGoogle Scholar
  16. 16.
    Mary, J., Bernard, Y., Lefaucheux, F.: Development of a space interferometer with a LiNbO3:Fe crystal as holographic support. J. Opt. Soc. Am. B 7(12), 2356–2361 (1990)CrossRefGoogle Scholar
  17. 17.
    Marrakchi, A., Huignard, J.P., Günter, P.: Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals. Appl. Phys. 24, 131–138 (1991)CrossRefGoogle Scholar
  18. 18.
    Labrunie, L., Pauliat, G., Launay, J.C., Leidenbach, S., Roosen, G.: Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal. Opt. Commun. 140, 119–127 (1997)CrossRefGoogle Scholar
  19. 19.
    Kamshilin, A., Petrov, M.: Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals. Opt. Commun. 53, 23–26 (1985)CrossRefGoogle Scholar
  20. 20.
    Troth, R., Dainty, J.C.: Holographic interferometry using anisotropic self-diffraction in Bi12SiO20. Opt. Lett. 16, 53–55 (1991)CrossRefGoogle Scholar
  21. 21.
    Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals for quantitative phase measurement on large objects. Proc. SPIE 2652, 248–257 (1996)CrossRefGoogle Scholar
  22. 22.
    Georges, M., Lemaire, P.: Phase-shifting real time interferometry that uses bismuth silicon oxide crystals. Appl. Opt. 34(32), 7497–7506 (1995). http://dx.doi.org/10.1364/AO.34.007497 CrossRefGoogle Scholar
  23. 23.
    Huignard, J.P., Herriau, J.P.: Real-time double exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration. Appl. Opt. 16(7), 1807–1809 (1977)CrossRefGoogle Scholar
  24. 24.
    Huignard, J.P., Herriau, J.P., Valentin, T.: Time average holographic interferometry with photoconductive electrooptic Bi12SiO20 crystals. Appl. Opt. 16(11), 2796–2798 (1977)CrossRefGoogle Scholar
  25. 25.
    Marrakchi, A., Huignard, J.P., Herriau, J.P.: Application of phase conjugation in Bi12SiO20 crystals to mode pattern visualization of diffuse vibrating structures. Opt. Commun. 34, 15–18 (1980)CrossRefGoogle Scholar
  26. 26.
    Huignard, J.P., Marrakchi, A.: Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis. Opt. Lett. 6, 622–624 (1981)CrossRefGoogle Scholar
  27. 27.
    Kamshilin, A., Mokrushina, E., Petrov, M.: Adaptative holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals. Opt. Eng. 28(6), 580–585 (1989)CrossRefGoogle Scholar
  28. 28.
    Dirksen, D., von Bally, G.: Holographic double exposure interferometry in near real time with photorefractive crystals. J. Opt. Soc. Am. B 11(9), 1858–1863 (1994)CrossRefGoogle Scholar
  29. 29.
    Rickermann, F., Riehemann, S., von Bally, G.: Utilization of photorefractive crystals for holographic double exposure interferometry with nanosecond laser pulses. Opt. Commun. 155, 91–98 (1998)CrossRefGoogle Scholar
  30. 30.
    Dirksen, D., Matthes, F., Riehemann, S., von Bally, G.: Phase shifting holographic double exposure interferometry with fast photorefractive crystals. Opt. Commun. 134, 310–316 (1997)CrossRefGoogle Scholar
  31. 31.
    Pouet, B., Krishnaswamy, S.: Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements. Appl. Opt. 35(5), 787–794 (1996)CrossRefGoogle Scholar
  32. 32.
    Labrunie, L., Pauliat, G., Roosen, G., Launay, J.C.: Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography. Opt. Lett. 20(15), 1652–1654 (1995)CrossRefGoogle Scholar
  33. 33.
    Neumann, D.B., Rose, H.W.: Improvement of recorded holographic fringes by feedback control. Appl. Opt. 6(6), 1097–1104 (1967)CrossRefGoogle Scholar
  34. 34.
    Kamshilin, A., Frejlich, J., Cescato, L.: Photorefractive crystals for the stabilization of the holographic setup. Appl. Opt. 25(14), 2375–2381 (1986)CrossRefGoogle Scholar
  35. 35.
    Dos Santos, P.A., Cescato, L., Frejlich, J.: Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals. Opt. Lett. 13(11), 1014–1016 (1988)CrossRefGoogle Scholar
  36. 36.
    Freschi, A., Frejlich, J.: Adjustable phase control in stabilized interferometry. Opt. Lett. 20(6), 635–637 (1995)CrossRefGoogle Scholar
  37. 37.
    Freschi, A., Barbosa, E., Frejlich, J.: Phase-compensated holographic recording based on anisotropic photorefractive diffraction. Opt. Lett. 20(19), 2027–2029 (1995)CrossRefGoogle Scholar
  38. 38.
    Hampp, N., Bräuchle, C., Oesterhelt, D.: Bacterioshodopsin wildtype and variants aspartate-96 asparagine as reversible holographic media. Biophys. J. 58, 83–93 (1990)CrossRefGoogle Scholar
  39. 39.
    Renner, T., Hampp, N.: Bacteriorhodopsin-films for dynamic time average interferometry. Opt. Commun. 96, 142–149 (1993)CrossRefGoogle Scholar
  40. 40.
    Barnhart, D., Koek, W., Juchem, T., Hampp, N., Coupland, J., Halliwell, N.: Bacterioshodopsin as a high-resolution, high-capacity buffer for digital holographic measurements. Meas. Sci. Technol. 15, 639–646 (2004)CrossRefGoogle Scholar
  41. 41.
    Hampp, N., Juchem, T.: System for holographic interferometry based on bacteriorhodopsin-films. Proc SPIE 4597, 7–15 (2001)CrossRefGoogle Scholar
  42. 42.
    Volodin, B., Sandalphon, Meerholz, K., Kippelen, B., Kukhtarev, N., Peyghambarian, N.: Highly efficient photorefractive polymers for dynamic holography. Opt. Eng. 34(8), 2213–2223 (1995)CrossRefGoogle Scholar
  43. 43.
    Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals: recent advances and applications. Proc. SPIE 2782, 476–485 (1996)CrossRefGoogle Scholar
  44. 44.
    Georges, M., Lemaire, P.: Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects. Appl. Phys. B 68, 1073–1083 (1999)CrossRefGoogle Scholar
  45. 45.
    Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera using photorefractive crystals. Applications in various metrological problems. Appl. Phys. B 72, 761–765 (2001). doi: 10.1007/s003400100582 CrossRefGoogle Scholar
  46. 46.
    Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera based on photorefractive crystals and application in interferometry. Opt. Mater. 18, 49–52 (2001)CrossRefGoogle Scholar
  47. 47.
    Georges, M., Lemaire, P.: Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations. Opt. Commun. 145, 249–257 (1998)CrossRefGoogle Scholar
  48. 48.
    Georges, M., Thizy, C., Scauflaire, V., Ryhon, S., Pauliat, G., Lemaire, P., Roosen, G.: Holographic interferometry with photorefractive crystals: review of applications and advances techniques. Proc. SPIE 4933, 250–255 (2003)CrossRefGoogle Scholar
  49. 49.
    Thizy, C., Georges, M., Lemaire, P., Stockman, Y., Doyle, D.: Phase control strategies for stabilization of photorefractive holographic interferometer. Proc. SPIE 6341, 63411O (2006)CrossRefGoogle Scholar
  50. 50.
    Thizy, C., Georges, M., Doulgeridis, M., Kouloumpi, E., Green, T., Hackney, S., Tornari, V.: Role of dynamic holography with photorefractive crystals in a multifunctional sensor for the detection of signature features in movable cultural heritage. Proc. SPIE 6618, 661828 (2007)Google Scholar
  51. 51.
    Georges, M., Thizy, C., Tiberghien, J., Lemaire, P.: Adaptation of a photorefractive holographic interferometer for analysis of centimetric to micrometric objects. Proc. SPIE 6341, 634139 (2006)CrossRefGoogle Scholar
  52. 52.
    Georges, M., Thizy, C.: Photorefractive holographic camera for monitoring deformation of MEMS. J. Micro/Nanolithogr. MEMS MOEMS 14(4), 041301 (2015)CrossRefGoogle Scholar
  53. 53.
    Thizy, C., Eliot, F., Ballhause, D., Olympio, K.R., Kluge, R., Shannon, A., Laduree, G., Logut, D., Georges, M.: Holographic interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models. Proc. SPIE 8788, 878807 (2013)CrossRefGoogle Scholar
  54. 54.
    Lynn, B., Blanche, P.A., Peyghambarian, N.: Photorefractive polymers for holography. J. Polym. Sci. B Polym. Phys. 52, 193–231 (2014)CrossRefGoogle Scholar
  55. 55.
    Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010)CrossRefGoogle Scholar
  56. 56.
    Tsutsuni, N., Kinashi, K., Nonomura, A.: Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite. Materials 5, 1477–1486 (2012)CrossRefGoogle Scholar
  57. 57.
    Tsujimura, S., Kinashi, K., Sakai, W., Tsutsumi, N.: High-speed photorefractive response capability in Triphenylamine polymer-based composites. Appl. Phys. Express 5, 064101 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université de Liège, Centre Spatial de LiègeAngleur (Liège)Belgium

Personalised recommendations