Photorefractive Properties of Polymer Composites Based on Carbon Nanotubes

  • Anatoly V. VannikovEmail author
  • Antonina D. Grishina
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)


Photorefractive polymer composites based on polymers with a high glass transition temperature, such as aromatic polyimide, Tg = 240 °C, polyvinylcarbazole, Tg = 200 °C, in which the random distribution of photosensitizers and nonlinear optical chromophores as dopants are “frozen” are discussed. In the case of the random distribution of chromophores, the third-order electric susceptibility has a nonzero value. Therefore, the nanosized structures having the high third-order polarizability due to an extended conjugated-bond system that is the carbon nanotubes should be used. The use of the same chromophores as the spectral sensitizers allowed us to develop polymer composites with photorefractive sensitivity in the near-IR region, at 1064 and 1550 nm. Photoelectric, charge transport, nonlinear optical, and photorefractive properties were investigated and results are presented in this chapter. The net two-beam coupling gain coefficients of 110 cm−1 at 1064 nm and 27.4 cm−1 at 1550 nm were obtained.


Polymer Composite Optical Absorption Coefficient Drift Mobility Photorefractive Effect Photorefractive Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Russian Foundation for Basic Research (grants nos. 11-03-00260, 14-03-00049) and the Swedish Foundation for Strategic Research (SSF).


  1. 1.
    Salvador, M., Prauzner, J., Köber, S., Meerholz, K., Turek, J.J., Jeong, K., Nolte, D.D.: Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device. Opt. Express 17, 11834 (2009)CrossRefGoogle Scholar
  2. 2.
    Tsujimura, S., Kinasahi, K., Sakai, W., Tsutsumi, N.: High speed photorefractive response capability in triphenylamine polymer-based composites. Appl. Phys. Express 5, 064101 (2012)CrossRefGoogle Scholar
  3. 3.
    Tay, S., Thomas, J., Eralp, M., Li, G., Kippelen, B., Marder, S.R., Meredith, G., Schulzgen, A., Peyghambarian, N.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85, 4561–4563 (2004)CrossRefGoogle Scholar
  4. 4.
    Calvete, M.J.F.: Near-infrared absorbing organic materials with nonlinear transmission properties. Int. Rev. Phys. Chem. 31, 319 (2012)CrossRefGoogle Scholar
  5. 5.
    Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104, 3267–3314 (2004)CrossRefGoogle Scholar
  6. 6.
    Würthner, F., Wortmann, R., Meerholz, K.: Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002)CrossRefGoogle Scholar
  7. 7.
    Andrews, J.H., Zrebiec, K.: Photorefraction. In: Encyclopedia of Polymer Science and Technology, pp. 1–28. Wiley, New York (2005)Google Scholar
  8. 8.
    Vannikov, A.V., Grishina, A.D.: The photorefractive effect in polymeric systems. Russ. Chem. Rev. 72, 471–488 (2003)CrossRefGoogle Scholar
  9. 9.
    Kusyk, M.G.: A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility. Phys. Rev. Lett. 85, 1218–1221 (2000)CrossRefGoogle Scholar
  10. 10.
    Kippelen, B., Marder, S.R., Hendrickx, E., Maldonado, J.L., Guillemet, G., Volodin, B.L., Steele, D.D., Enami, Y., Sandalphon, Yao, Y.J., Wang, J.F., Röckel, H., Erskine, L., Peyghambarian, N.: Infrared photorefractive polymers and their application for imaging. Science 279, 54–61 (1998)CrossRefGoogle Scholar
  11. 11.
    Köber, S., Salvador, M., Meerholz, K.: Organic photorefractive materials and applications. Adv. Mater. 23, 4725–4763 (2011)CrossRefGoogle Scholar
  12. 12.
    Yu, P., Balasubramanian, S., Ward, T.Z., Chandrasekhar, M., Chandrasekhar, H.R.: Optimisation of photorefractive multiple quantum wells for biomedical imaging. Synth. Met. 155, 406–409 (2005)CrossRefGoogle Scholar
  13. 13.
    Vannikov, A.V., Grishina, A.D., Gorbunova, Y.G., Enakieva, Y.Y., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Tsivadze, A.Y.: Infrared photorefractive composites based on supramolecular ensembles of ruthenium (II) tetra-15-crown-5-phthalocyaninate. Dokl. Phys. Chem. 403, 137–141 (2005)CrossRefGoogle Scholar
  14. 14.
    Grishina, A.D., Shapiro, B.I., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Berendyaev, V.I., Rychwalski, R.W., Vannikov, A.V.: IR-region photorefractive composites based on polyimide and J-aggregates of cyanine dye. Polym. Sci. Ser. A 47, 151–159 (2005)Google Scholar
  15. 15.
    Vannikov, A.V., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V.: Infrared photorefractive composites based on polyimide and J-aggregates of cyanine dye. J. Nonlinear Opt. Phys. Mater. 14, 439–448 (2005)CrossRefGoogle Scholar
  16. 16.
    Licea-Jimeґnez, L., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-infrared photorefractive polymer composites based on carbon nanotubes. Carbon 44, 113–120 (2006)CrossRefGoogle Scholar
  17. 17.
    Klein, K.L., Melechko, A.V., McKnight, T.E., Retterer, S.T., Rack, P.D., Fowlkes, J.D., Joy, D.C., Simpson, M.L.: Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)CrossRefGoogle Scholar
  18. 18.
    Grishina, A.D., Pereshivko, L.Y., Licea-Jimeґnez, L., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-IR photorefractive composites based on oxidized single-wall carbon nanotubes. High Energy Chem. 42, 378–384 (2008)CrossRefGoogle Scholar
  19. 19.
    Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511–203514 (2005)CrossRefGoogle Scholar
  20. 20.
    Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116–8121 (1999)CrossRefGoogle Scholar
  21. 21.
    Tameev, A.R., Licea-Jiménez, L., Pereshivko, L.Y., Rychwalski, R.W., Vannikov, A.V.: Charge carrier mobility in films of carbon-nanotube-polymer composites. J. Phys. Conf. Ser. 61, 1152–1156 (2007)CrossRefGoogle Scholar
  22. 22.
    Tameev, A.R., Pereshivko, L.Y., Vannikov, A.V.: Electrophysical properties of poly(vinylcarbazole)—carbon nanotubes composite films. Polym. Sci. Ser. A 51, 182–186 (2009)CrossRefGoogle Scholar
  23. 23.
    Vannikov, A.V., Grishina, A.D., Rychwalski, R.W.: Photoelectric, nonlinear optical and photorefractive properties of polymer/carbon nanotube composites. Carbon 49, 311–319 (2011)CrossRefGoogle Scholar
  24. 24.
    Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., Vannikov, A.V.: Essential role of correlations in governing charge transport in disordered organic materials. Phys. Rev. Lett. 81, 4472–4475 (1998)CrossRefGoogle Scholar
  25. 25.
    Novikov, S.V.: Charge-carrier transport in disordered polymers. J. Polym. Sci. B 41, 2584–2594 (2003)CrossRefGoogle Scholar
  26. 26.
    Novikov, S.V., Vannikov, A.V.: Hopping charge transport in disordered organic materials: where is the disorder? J. Phys. Chem. C 113, 2532–2540 (2009)CrossRefGoogle Scholar
  27. 27.
    Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21(25), 30392–30400 (2013)CrossRefGoogle Scholar
  28. 28.
    Dalton, A.B., Coleman, J.N., Panhuis, M.I.H., McCarthy, B., Drury, A., Blau, A., Paci, B., Nunzi, J.-M., Byrne, H.J.: Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. J. Photochem. Photobiol. A Chem. 144, 31–41 (2001)CrossRefGoogle Scholar
  29. 29.
    Laryushkin, A.S., Savel’ev, V.V., Zolotarevskii, V.I., Grishina, A.D., Krivenko, T.V., Rychwalski, R.W., Vannikov, A.V.: Third-order optical susceptibility of single walled carbon nanotubes. High Energy Chem. 45, 245–249 (2011)CrossRefGoogle Scholar
  30. 30.
    Gnoli, A., Razzari, L., Righini, M.: Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Opt. Express 13, 7976–7981 (2005)CrossRefGoogle Scholar
  31. 31.
    Grishina, A.D., Licea-Jimenez, L., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Infrared photorefractive composites based on polyvinylcarbazole and carbon nanotubes. High Energy Chem. 40, 341–347 (2006)CrossRefGoogle Scholar
  32. 32.
    Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)CrossRefGoogle Scholar
  33. 33.
    Lee, W., Chiu, C.S.: Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt. Lett. 26, 521–523 (2001)CrossRefGoogle Scholar
  34. 34.
    Khoo, I.C., Ding, J., Zhang, Y., Chen, K., Diaz, A.: Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal. Appl. Phys. Lett. 82, 3587–3589 (2003)CrossRefGoogle Scholar
  35. 35.
    Vannikov, A.V., Grishina, A.D.: Photorefractive polymer composites based on nanosized nonlinear optical chromophores. High Energy Chem. 41, 162–175 (2007)CrossRefGoogle Scholar
  36. 36.
    Grishina, A.D., Pereshivko, L.Y., Licea-Jiménez, L., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Carbon nanotube-containing photorefractive polymer composites operating at telecommunication wavelengths. High Energy Chem. 41, 267–273 (2007)CrossRefGoogle Scholar
  37. 37.
    Mecher, E., Gallego-Gomez, F., Tillmann, H., Horhold, H.-H., Hummelen, J.C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002)CrossRefGoogle Scholar
  38. 38.
    Douglas, W.E., Klapshina, L.G., Kuzhelev, A.S., Peng, W., Semenov, V.V.: N-Ethylcarbazole as a structure-directing agent in poly[(ethynediyl)(arylene)(ethynediyl) silylene]-poly(phenylsilsesquioxane) hybrid nanomaterials exhibiting photorefraction at telecommunication wavelengths. J. Mater. Chem. 13, 2809–2813 (2003)CrossRefGoogle Scholar
  39. 39.
    Acebal, P., Blaya, S., Carretero, L.: Bidimensional chromophores for photorefractive polymers with working wavelength in the near IR. Opt. Express 13, 8296–8307 (2005)CrossRefGoogle Scholar
  40. 40.
    Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Zolotarevskii, V.I.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99, 643–648 (2005)CrossRefGoogle Scholar
  41. 41.
    Grishina, A.D., Licea-Jimenez, L., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-infrared range photorefractive composites based on poly(vinylcarbazole), multiwall carbon nanotubes, and fullerene C60. Polym. Sci. Ser. A 50, 985–991 (2008)CrossRefGoogle Scholar
  42. 42.
    Laryushkin, A.S., Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: The effect of cyanine dyes on photorefractive properties of composites based on carbon nanotubes. Prot. Met. Phys. Chem. Surf. 48, 191–198 (2012)CrossRefGoogle Scholar
  43. 43.
    Verkhovskaya, K.A., Laryushkin, A.S., Savel’ev, V.V., Grishina, A.D., Vannikov, A.V.: Photorefractive properties of a nanocomposite based on a ferroelectric polymer. Tech. Phys. 59, 1224–1227 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations