Advertisement

Charge Transport and Photogeneration in Organic Semiconductors: Photorefractives and Beyond

  • Canek Fuentes-HernandezEmail author
Chapter
  • 757 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)

Abstract

Over the last decade, the science and technology of organic semiconductors has seen tremendous progress. The electrical and optical properties displayed by state-of-the-art organic semiconductors are remarkable in their tolerance to disorder, their ability to display high charge carrier mobility values and bipolar transport, and in that they can be engineered to display optical activity in the spectral range from the visible to the near-infrared. This new breed of organic materials is forcing us to reevaluate preconceived notions on how to optimize charge transport and photogeneration in disordered organic semiconductors. Lessons learned in the development of these remarkable organic semiconductors have rapidly spread across organic optoelectronic device platforms, from organic photovoltaics to organic field-effect transistors to organic light emitting diodes and to organic photodetectors, and thus are expected to provide further inspiration to continue advancing the science and technology of organic photorefractives. The purpose of this chapter is to provide a broad overview of current understanding of charge transport and photogeneration in organic semiconductors, going from crystalline to amorphous solids as well as to provide a brief overview of novel organic photoconductors that may offer significant opportunities to advance the science and technology of organic optoelectronic devices in general and of organic photorefractives in particular.

Keywords

High Occupy Molecular Orbital Charge Transport Organic Semiconductor Frenkel Exciton Photorefractive Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., et al.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497–500 (2007)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., et al.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., et al.: Small-molecule solar cells with efficiency over 9%. Nat. Photon. 9(1), 35–41 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., et al.: Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4, 2238 (2013)Google Scholar
  5. 5.
    Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., et al.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26(19), 2993–2998 (2014)CrossRefGoogle Scholar
  6. 6.
    Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C.B., Chen, J., et al.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014)Google Scholar
  7. 7.
    Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., et al.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014)CrossRefGoogle Scholar
  8. 8.
    Bürgi, L., Turbiez, M., Pfeiffer, R., Bienewald, F., Kirner, H.-J., Winnewisser, C.: High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv. Mater. 20(11), 2217–2224 (2008)CrossRefGoogle Scholar
  9. 9.
    Gong, X., Tong, M., Xia, Y., Cai, W., Moon, J.S., Cao, Y., et al.: High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009)CrossRefGoogle Scholar
  10. 10.
    Armin, A., Hambsch, M., Kim, I.K., Burn, P.L., Meredith, P., Namdas, E.B.: Thick junction broadband organic photodiodes. Laser Photon. Rev. 8(6), 924–932 (2014)CrossRefGoogle Scholar
  11. 11.
    Armin, A., Jansen-van Vuuren, R.D., Kopidakis, N., Burn, P.L., Meredith, P.: Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015)CrossRefGoogle Scholar
  12. 12.
    Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., et al.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 13, 233 (1966)Google Scholar
  13. 13.
    Sutter, K., Gunter, P.: Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. J. Opt. Soc. Am. B 7(12), 2274 (1990)CrossRefGoogle Scholar
  14. 14.
    Sutter, K., Hullinger, J., Günter, P.: Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Commun. 74(8), 867–870 (1990)CrossRefGoogle Scholar
  15. 15.
    Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66(14), 1846–1849 (1991)CrossRefGoogle Scholar
  16. 16.
    Tamura, K., Padias, A.B., Hall Jr., H.K., Peyghambarian, N.: New polymeric material containing the tricyanovinylcarbazole group for photorefractive applications. Appl. Phys. Lett. 60(15), 1803–1805 (1992)CrossRefGoogle Scholar
  17. 17.
    Winiarz, J.G., Zhang, L.M., Lal, M., Friend, C.S., Prasad, P.N.: Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite. J. Am. Chem. Soc. 121(22), 5287–5295 (1999)CrossRefGoogle Scholar
  18. 18.
    Lundquist, P.M., Wortmann, R., Geletneky, C., Twieg, R.J., Jurich, M., Lee, V.Y., et al.: Organic glasses: a new class of photorefractive materials. Science 274(5290), 1182–1185 (1996)CrossRefGoogle Scholar
  19. 19.
    Khoo, I.C., Li, H., Liang, Y.: Observation of orientational photorefractive effects in nematic liquid crystals. Opt. Lett. 19(21), 1723–1725 (1994)CrossRefGoogle Scholar
  20. 20.
    Marder, S.R., Kippelen, B., Jen, A.K.Y., Peyghambarian, N.: Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature (London) 388, 845–851 (1997)CrossRefGoogle Scholar
  21. 21.
    Kippelen, B., Meyers, F., Peyghambarian, N., Marder, S.R.: Chromophore design for photorefractive applications. J. Am. Chem. Soc. 119(19), 4559–4560 (1997)CrossRefGoogle Scholar
  22. 22.
    Meerholz, K., De Nardin, Y., Bittner, R.: Improved performance of photorefractive polymers based on merocyanine dyes in a polar matrix. Appl. Phys. Lett. 73(1), 4–6 (1998)CrossRefGoogle Scholar
  23. 23.
    Wright, D., Diaz-Garcia, M.A., Casperson, J.D., DeClue, M., Moerner, W.E., Twieg, R.J.: High-speed photorefractive polymer composites. Appl. Phys. Lett. 73(11), 1490–1492 (1998)CrossRefGoogle Scholar
  24. 24.
    Barzoukas, M., Blanchard-Desce, M.: Figures of merit of push-pull molecules in photorefractive polymers. J. Chem. Phys. 112(4), 2036–2044 (2000)CrossRefGoogle Scholar
  25. 25.
    Würthner, F., Wortmann, R., Meerholz, K.: Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002)CrossRefGoogle Scholar
  26. 26.
    Herlocker, J.A., Ferrio, K.B., Hendrickx, E., Guenther, B.D., Mery, S., Kippelen, B., et al.: Direct observation of orientation limit in a fast photorefractive polymer composite. Appl. Phys. Lett. 74(16), 2253–2255 (1999)CrossRefGoogle Scholar
  27. 27.
    Van Steenwinckel, D., Hendrickx, E., Samyn, C., Engels, C., Persoons, A.: Effect of plasticizer and temperature on the photorefractive phase shift in fully functionalized polymethacrylates. J. Mater. Chem. 10(12), 2692–2697 (2000)CrossRefGoogle Scholar
  28. 28.
    Moerner, W.E., Silence, S.M., Hache, F., Bjorklund, G.C.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11(2), 320 (1994)CrossRefGoogle Scholar
  29. 29.
    Meerholz, K., Volodin, B.L., Sandalphon, Kippelen, B., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371(6497), 497–500 (1994)CrossRefGoogle Scholar
  30. 30.
    Eralp, M., Thomas, J., Tay, S., Schulzgen, G.L.A., Norwood, R.A., Yamamoto, M., et al.: Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure. Appl. Phys. Lett. 89, 11 (2006)CrossRefGoogle Scholar
  31. 31.
    Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., et al.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320), 80–83 (2010)CrossRefGoogle Scholar
  32. 32.
    Tay, S., Blanche, P.-A., Voorakaranam, R., Tunc, A., Lin, W., Rokutanda, S., et al.: An updatable holographic three-dimensional display. Nature 451(7179), 694–698 (2008)CrossRefGoogle Scholar
  33. 33.
    Morrison, R.T.: Organic Chemistry, 5th edn. Allyn and Bacon, Boston (1987)Google Scholar
  34. 34.
    Ibach, H.: Solid-State Physics: An Introduction to Principles of Materials Science. Springer, Berlin (2010)Google Scholar
  35. 35.
    Kirchartz, T., Nelson, J.: Device modelling of organic bulk heterojunction solar cells. In: Beljonne, D., Cornil, J. (eds.) Multiscale Modelling of Organic and Hybrid Photovoltaics, vol. 352, pp. 279–324. Springer, Berlin (2014)Google Scholar
  36. 36.
    Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., Cornil, J.: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. 99(9), 5804–5809 (2002)CrossRefGoogle Scholar
  37. 37.
    Bredas, J.-L.: Mind the gap! Mater. Horiz. 1(1), 17–19 (2014)CrossRefGoogle Scholar
  38. 38.
    Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., et al.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12(11), 1038–1044 (2013)CrossRefGoogle Scholar
  39. 39.
    Guillet, J.: Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules. Cambridge University Press, Cambridge (1985)Google Scholar
  40. 40.
    Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)CrossRefGoogle Scholar
  41. 41.
    Troisi, A.: Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv. Mater. 19(15), 2000–2004 (2007)CrossRefGoogle Scholar
  42. 42.
    Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
  43. 43.
    Ashcroft, N.W.: Solid State Physics. Saunders College, Philadelphia (1976)Google Scholar
  44. 44.
    Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken (2005)Google Scholar
  45. 45.
    Kao, K.-C.: Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Academic Press, Amsterdam (2004)Google Scholar
  46. 46.
    Bandyopadhyay, S.: Physics of Nanostructured Solid State Devices. Springer, New York (2012)CrossRefGoogle Scholar
  47. 47.
    Lynn, B., Blanche, P.-A., Peyghambarian, N.: Photorefractive polymers for holography. J. Polym. Sci. B 52(3), 193–231 (2014)CrossRefGoogle Scholar
  48. 48.
    Köber, S., Salvador, M., Meerholz, K.: Organic photorefractive materials and applications. Adv. Mater. 23(41), 4725–4763 (2011)CrossRefGoogle Scholar
  49. 49.
    Anderson, P.W.: Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34(15), 953–955 (1975)CrossRefGoogle Scholar
  50. 50.
    Belitz, D., Kirkpatrick, T.R.: The Anderson-Mott transition. Rev. Mod. Phys. 66(2), 261–380 (1994)CrossRefGoogle Scholar
  51. 51.
    Lu, G., Blakesley, J., Himmelberger, S., Pingel, P., Frisch, J., Lieberwirth, I., et al.: Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013)CrossRefGoogle Scholar
  52. 52.
    Hwang, D.K., Fuentes-Hernandez, C., Fenoll, M., Yun, M., Park, J., Shim, J.W., et al.: Systematic reliability study of top-gate p-and n-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 3378–3386 (2014)CrossRefGoogle Scholar
  53. 53.
    Lous, E.J., Blom, P.W.M., Molenkamp, L.W., de Leeuw, D.M.: Schottky contacts on a highly doped organic semiconductor. Phys. Rev. B 51(23), 17251–17254 (1995)CrossRefGoogle Scholar
  54. 54.
    Qi, Y., Sajoto, T., Kröger, M., Kandabarow, A.M., Park, W., Barlow, S., et al.: A molybdenum dithiolene complex as p-dopant for hole-transport materials: a multitechnique experimental and theoretical investigation. Chem. Mater. 22(2), 524–531 (2009)CrossRefGoogle Scholar
  55. 55.
    Guo, S., Kim, S.B., Mohapatra, S.K., Qi, Y., Sajoto, T., Kahn, A., et al.: n-Doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24(5), 699–703 (2012)CrossRefGoogle Scholar
  56. 56.
    Lüssem, B., Riede, M., Leo, K.: Doping of organic semiconductors. Phys Status Solidi A 210(1), 9–43 (2013)CrossRefGoogle Scholar
  57. 57.
    Wellmann, P., Hofmann, M., Zeika, O., Werner, A., Birnstock, J., Meerheim, R., et al.: High-efficiency p-i-n organic light-emitting diodes with long lifetime. J. Soc. Inf..Display 13(5), 393–397 (2005)CrossRefGoogle Scholar
  58. 58.
    Gao, Z.Q., Mi, B.X., Xu, G.Z., Wan, Y.Q., Gong, M.L., Cheah, K.W., et al.: An organic p-type dopant with high thermal stability for an organic semiconductor. Chem. Commun. 1, 117–119 (2008)CrossRefGoogle Scholar
  59. 59.
    Olthof, S., Mehraeen, S., Mohapatra, S.K., Barlow, S., Coropceanu, V., Brédas, J.-L., et al.: Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109(17), 176601 (2012)CrossRefGoogle Scholar
  60. 60.
    Olthof, S., Singh, S., Mohapatra, S.K., Barlow, S., Marder, S.R., Kippelen, B., et al.: Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Appl. Phys. Lett. 101(25), 253303 (2012)CrossRefGoogle Scholar
  61. 61.
    Pingel, P., Neher, D.: Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87(11), 115209 (2013)CrossRefGoogle Scholar
  62. 62.
    Kim, G.H., Shao, L., Zhang, K., Pipe, K.P.: Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12(8), 719–723 (2013)CrossRefGoogle Scholar
  63. 63.
    Kido, J., Matsumoto, T.: Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl. Phys. Lett. 73, 2866–2868 (1998)CrossRefGoogle Scholar
  64. 64.
    Gao, W., Kahn, A.: Electrical doping: the impact on interfaces of π -conjugated molecular films. J. Phys. Condens. Matter 15(38), S2757 (2003)CrossRefGoogle Scholar
  65. 65.
    Abe, Y., Hasegawa, T., Takahashi, Y., Yamada, T., Tokura, Y.: Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors. Appl. Phys. Lett. 87(15), 153506 (2005)CrossRefGoogle Scholar
  66. 66.
    Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., et al.: A universal method to produce low–work function electrodes for organic electronics. Science 336(6079), 327–332 (2012)CrossRefGoogle Scholar
  67. 67.
    Dai, A., Zhou, Y., Shu, A.L., Mohapatra, S.K., Wang, H., Fuentes‐Hernandez, C., et al.: Enhanced charge‐carrier injection and collection via lamination of doped polymer layers p‐doped with a solution‐processible molybdenum complex. Adv. Funct. Mater. 24(15), 2197–2204 (2014)CrossRefGoogle Scholar
  68. 68.
    Wetzelaer, G.A.H., Koster, L.J.A., Blom, P.W.M.: Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 6 (2011)CrossRefGoogle Scholar
  69. 69.
    Li, L., Lu, N., Liu, M., Bässler, H.: General Einstein relation model in disordered organic semiconductors under quasiequilibrium. Phys. Rev. B 90(21), 214107 (2014)CrossRefGoogle Scholar
  70. 70.
    Holstein, T.: Studies of polaron motion: part II. The “small” polaron. Ann. Phys. 8(3), 343–389 (1959)CrossRefGoogle Scholar
  71. 71.
    Holstein, T.: Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)CrossRefGoogle Scholar
  72. 72.
    Hannewald, K., Bobbert, P.A.: Ab initio theory of charge-carrier conduction in ultrapure organic crystals. Appl. Phys. Lett. 85(9), 1535–1537 (2004)CrossRefGoogle Scholar
  73. 73.
    Borsenberger, P.M., Magin, E.H., Van der Auweraer, M., De Schryver, F.C.: The role of disorder on charge transport in molecularly doped polymers and related materials. Phys. Status Solidi A 140, 9–45 (1993)CrossRefGoogle Scholar
  74. 74.
    Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 120(3), 745–755 (1960)CrossRefGoogle Scholar
  75. 75.
    Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938)CrossRefGoogle Scholar
  76. 76.
    Schein, L.B., Peled, A., Glatz, D.: The electric field dependence of the mobility in molecularly doped polymers. J. Appl. Phys. 66(2), 686–692 (1989)CrossRefGoogle Scholar
  77. 77.
    Coehoorn, R., Bobbert, P.A.: Physics of Organic Semiconductors, 2nd completely new rev. edn. Wiley-VCH, Weinheim (2012)Google Scholar
  78. 78.
    Bässler, H.: Charge transport in molecularly doped polymers. Philos. Mag. B Phys. Condensed Matter Stat. Mech. Electron. Opt. Magn. Prop. 50(3), 347–362 (1984)Google Scholar
  79. 79.
    Bässler, H.: Charge transport in disordered organic photoconductors—a Monte-Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)CrossRefGoogle Scholar
  80. 80.
    Bässler, H.: Nondispersive and dispersive transport in random organic photoconductors. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 252, 11–21 (1994)CrossRefGoogle Scholar
  81. 81.
    Vanderauweraer, M., Deschryver, F.C., Borsenberger, P.M., Bassler, H.: Disorder in charge-transport in doped polymers. Adv. Mater. 6(3), 199–213 (1994)CrossRefGoogle Scholar
  82. 82.
    Goonesekera, A., Ducharme, S.: Effect of dipolar molecules on carrier mobilities in photorefractive polymer. J. Appl. Phys. 85(9), 6506–6514 (1999)CrossRefGoogle Scholar
  83. 83.
    Dieckmann, A., Bassler, H., Borsenberger, P.M.: An assessment of the role of dipoles on the density-of-states function of disordered molecular-solids. J. Chem. Phys. 99(10), 8136–8141 (1993)CrossRefGoogle Scholar
  84. 84.
    Young, R.H.: Dipolar lattice model of disorder in random media analytical evaluation of the Gaussian disorder model. Philos. Mag. Part B 72(4), 435–457 (1995)CrossRefGoogle Scholar
  85. 85.
    Hirao, A., Nishizawa, H.: Effect of dipoles on carrier drift and diffusion of molecularly doped polymers. Phys. Rev. B 56(6), R2904–R2907 (1997)CrossRefGoogle Scholar
  86. 86.
    Dunlap, D.H., Parris, P.E., Kenkre, V.M.: Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys. Rev. Lett. 77(3), 542 (1996)CrossRefGoogle Scholar
  87. 87.
    Maldonado, J.L., Bishop, M., Fuentes-Hernandez, C., Caron, P., Domercq, B., Zhang, Y.D., et al.: Effect of substitution on the hole mobility of bis(diarylamino)biphenyl derivatives doped in poly(styrene). Chem. Mater. 15(4), 994–999 (2003)CrossRefGoogle Scholar
  88. 88.
    Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., Vannikov, A.V.: Essential role of correlations in governing charge transport in disordered organic materials. Phys. Rev. Lett. 81(20), 4472 (1998)CrossRefGoogle Scholar
  89. 89.
    Fishchuk, I.I., Hertel, D., Bässler, H., Kadashchuk, A.K.: Effective-medium theory of hopping charge-carrier transport in weakly disordered organic solids. Phys. Rev. B 65(12), 125201 (2002)CrossRefGoogle Scholar
  90. 90.
    Fishchuk, I.I., Kadashchuk, A.K., Bassler, H., Weiss, D.S.: Nondispersive charge-carrier transport in disordered organic materials containing traps. Phys. Rev. B 66, 20 (2002)CrossRefGoogle Scholar
  91. 91.
    Arkhipov, V.I., Reynaert, J., Jin, Y.D., Heremans, P., Emelianova, E.V., Adriaenssens, G.J., et al.: The effect of deep traps on carrier hopping in disordered organic materials. Synth. Met. 138(1–2), 209–212 (2003)CrossRefGoogle Scholar
  92. 92.
    Parris, P.E., Kenkre, V.M., Dunlap, D.H.: Nature of charge carriers in disordered molecular solids: are polarons compatible with observations? Phys. Rev. Lett. 87(12), 126601 (2001)CrossRefGoogle Scholar
  93. 93.
    Fishchuk, I.I., Kadashchuk, A., Bassler, H., Nespurek, S.: Nondispersive polaron transport in disordered organic solids. Phys. Rev. B 67, 22 (2003)CrossRefGoogle Scholar
  94. 94.
    Sirringhaus, H., Tessler, N., Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998)CrossRefGoogle Scholar
  95. 95.
    Salleo, A., Chen, T.W., Völkel, A.R., Wu, Y., Liu, P., Ong, B.S., et al.: Intrinsic hole mobility and trapping in a regioregular poly(thiophene). Phys. Rev. B 70(11), 115311 (2004)CrossRefGoogle Scholar
  96. 96.
    Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72(15), 155206 (2005)CrossRefGoogle Scholar
  97. 97.
    Coehoorn, R.: Hopping mobility of charge carriers in disordered organic host-guest systems: dependence on the charge-carrier concentration. Phys. Rev. B 75(15), 155203 (2007)CrossRefGoogle Scholar
  98. 98.
    Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., et al.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94(20), 206601–206604 (2005)CrossRefGoogle Scholar
  99. 99.
    Zhou, J., Zhou, Y.C., Zhao, J.M., Wu, C.Q., Ding, X.M., Hou, X.Y.: Carrier density dependence of mobility in organic solids: a Monte Carlo simulation. Phys. Rev. B 75(15), 153201 (2007)CrossRefGoogle Scholar
  100. 100.
    Bässler, H., Köhler, A.: Charge transport in organic semiconductors. In: Metzger, R.M. (ed.) Unimolecular and supramolecular electronics I, vol. 312, pp. 1–65. Springer, Berlin (2012)CrossRefGoogle Scholar
  101. 101.
    Herlocker, J.A., Fuentes-Hernandez, C., Ferrio, K.B., Hendrickx, E., Blanche, P.A., Peyghambarian, N., et al.: Stabilization of the response time in photorefractive polymers. Appl. Phys. Lett. 77(15), 2292–2294 (2000)CrossRefGoogle Scholar
  102. 102.
    Ostroverkhova, O., Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys. 92(4), 1727–1743 (2002)CrossRefGoogle Scholar
  103. 103.
    Fuentes-Hernandez, C., Thomas, J., Termine, R., Meredith, G., Peyghambarian, N., Kippelen, B., et al.: Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation. Appl. Phys. Lett. 85(11), 1877–1879 (2004)CrossRefGoogle Scholar
  104. 104.
    Thomas, J., Fuentes-Hernandez, C., Yamamoto, M., Cammack, K., Matsumoto, K., Walker, G.A., et al.: Bistriarylamine polymer-based composites for photorefractive applications. Adv. Mater. 16(22), 2032–2036 (2004)CrossRefGoogle Scholar
  105. 105.
    Mecher, E., Gallego-G¢mez, F., Tillmann, H., Horhold, H.-H., Hummelen, J. C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002).Google Scholar
  106. 106.
    Kulikovsky, L., Neher, D., Mecher, E., Meerholz, K., Horhold, H.H., Ostroverkhova, O.: Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite. Phys. Rev. B 69, 125216-1–125216-11 (2004)CrossRefGoogle Scholar
  107. 107.
    Mecher, E., Gallego-Gomez, F., Meerholz, K., Tillmann, H., Horhold, H.H., Hummelen, J.C.: Photophysical and redox NIR-sensitivity enhancement in photorefractive polymer composites. ChemPhysChem 5(2), 277–284 (2004)CrossRefGoogle Scholar
  108. 108.
    Kippelen, B., Blanche, P.A., Schulzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.F., et al.: Photorefractive polymers with non-destructive readout. Adv. Funct. Mater. 12(9), 615–620 (2002)CrossRefGoogle Scholar
  109. 109.
    Blanche, P.A., Kippelen, B., Schulzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.F., et al.: Photorefractive polymers sensitized by two-photon absorption. Opt. Lett. 27(1), 19–21 (2002)CrossRefGoogle Scholar
  110. 110.
    Tay, S., Thomas, J., Eralp, M., Li, G.Q., Kippelen, B., Marder, S.R., et al.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85(20), 4561–4563 (2004)CrossRefGoogle Scholar
  111. 111.
    Tay, S., Thomas, J., Eralp, M., Li, G.Q., Norwood, R.A., Schulzgen, A., et al.: High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time. Appl. Phys. Lett. 87, 17 (2005)CrossRefGoogle Scholar
  112. 112.
    Nolt, D.D. (ed.): Photorefractive effects and materials. Kluwer, Boston (1995).Google Scholar
  113. 113.
    Hendrickx, E., Zhang, Y., Ferrio, K.B., Herlocker, J.A., Anderson, J., Armstrong, N.R., et al.: Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated stryrene chromophores. J. Mater. Chem. 9, 2251–2258 (1999)CrossRefGoogle Scholar
  114. 114.
    Däubler, T.K., Bittner, R., Meerholz, K., Cimrov, V., Neher, D.: Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials. Phys. Rev. B 61(20), 13515–13527 (2000)CrossRefGoogle Scholar
  115. 115.
    Nespurek, S., Cimrova, V., Pfleger, J., Kminek, I.: Free charge carrier formation in polymers under illumination. Polym. Adv. Technol. 7(5–6), 459–470 (1996)CrossRefGoogle Scholar
  116. 116.
    Davidenko, N.A., Zabolotnyi, M.A., Ishchenko, A.A., Kuvshinskii, N.G., Borolina, N.P.: Electric field effects on photoconductivity and electronic absorption spectra of photogeneration sites in amorphous molecular semiconductors. High Energy Chem. 38(1), 13–20 (2004)CrossRefGoogle Scholar
  117. 117.
    Onsager, L.: Initial recombination of ions. Phys. Rev. 54, 554–557 (1938)CrossRefGoogle Scholar
  118. 118.
    Islam, M.A.: Einstein–Smoluchowski diffusion equation: a discussion. Phys. Scr. 70(2–3), 120 (2004)CrossRefGoogle Scholar
  119. 119.
    Mozumder, A.: Effect of an external electric field on the yield of free ions. 1. General results from the Onsager theory. J. Chem. Phys. 60(11), 4300–4304 (1974)CrossRefGoogle Scholar
  120. 120.
    Braun, L.C.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80(9), 4157–4161 (1984)CrossRefGoogle Scholar
  121. 121.
    Noolandi, J., Hong, K.M.: Theory of photogeneration and fluorescence quenching. J. Chem. Phys. 70(7), 3230–3236 (1979)CrossRefGoogle Scholar
  122. 122.
    Marcus, R.A., Siders, P.: Theory of highly exothermic electron-transfer reactions. J. Phys. Chem. 86(5), 622–630 (1982)CrossRefGoogle Scholar
  123. 123.
    Marcus, R.A.: Electron-transfer reactions in chemistry—theory and experiment. Rev. Mod. Phys. 65(3), 599–610 (1993)CrossRefGoogle Scholar
  124. 124.
    Wang, Y., Suna, A.: Fullerenes in photoconductive polymers. Charge generation and charge transport. J. Phys. Chem. B 101(29), 5627–5638 (1997)CrossRefGoogle Scholar
  125. 125.
    Schildkraut, J.S., Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(5), 1888–1893 (1992)CrossRefGoogle Scholar
  126. 126.
    Schildkraut, J.S., Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(11), 5055–5060 (1992)CrossRefGoogle Scholar
  127. 127.
    Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104(7), 3267–3314 (2004)CrossRefGoogle Scholar
  128. 128.
    Langevin, P.: Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys 28, 433 (1903)Google Scholar
  129. 129.
    Silver, M., Sharma, R.: Carrier generation and recombination in anthracene. J. Chem. Phys. 46(2), 692–696 (1967)CrossRefGoogle Scholar
  130. 130.
    Albrecht, U., Bassler, H.: Langevin-type charge-carrier recombination in a disordered hopping system. Phys. Status Solidi B 191(2), 455–459 (1995)CrossRefGoogle Scholar
  131. 131.
    Nenashev, A.V., Jansson, F., Baranovskii, S.D., Österbacka, R., Dvurechenskii, A.V., Gebhard, F.: Role of diffusion in two-dimensional bimolecular recombination. Appl. Phys. Lett. 96(21), 213304 (2010)CrossRefGoogle Scholar
  132. 132.
    Greenham, N.C., Bobbert, P.A.: Two-dimensional electron-hole capture in a disordered hopping system. Phys. Rev. B 68(24), 245301 (2003)CrossRefGoogle Scholar
  133. 133.
    Adriaenssens, G.J., Arkhipov, V.I.: Non-Langevin recombination in disordered materials with random potential distributions. Solid State Commun. 103(9), 541–543 (1997)CrossRefGoogle Scholar
  134. 134.
    Nelson, J.: Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys. Rev. B 67(15), 155209 (2003)CrossRefGoogle Scholar
  135. 135.
    Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. 1. Steady-state. Ferroelectrics 22(3–4), 949–960 (1979)Google Scholar
  136. 136.
    Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. 2. Beam coupling-light amplification. Ferroelectrics 22(3–4), 961–964 (1979)Google Scholar
  137. 137.
    Fuentes-Hernandez, C., Thomas, J., Meredith, G.R., Peyghambarian, N.N., Marder, S.R., Kippelen, B.: Trapping mechanisms and dynamics in bis-triarylamine-based photorefractive polymer composites. In: Organic Holographic Materials and Applications II, Denver, CO, USA, pp. 96–102 (2004).Google Scholar
  138. 138.
    Cui, Y., Swedek, B., Cheng, N., Zieba, J., Prasad, P.N.: Dynamics of photorefractive grating erasure in polymeric composites. J. Appl. Phys. 85(1), 38–43 (1999)CrossRefGoogle Scholar
  139. 139.
    Yuan, B., Sun, X., Hou, C., Li, Y., Zhou, Z., Jiang, Y., et al.: Kinetics of the formation of space-charge field in photorefractive polymers. J. Appl. Phys. 88(10), 5562–5569 (2000)CrossRefGoogle Scholar
  140. 140.
    Yuan, B., Sun, X., Jiang, Y., Hou, C., Zhou, Z.: Effect of the applied electric field on the steady state and temporary state space-charge field in photorefractive polymers. J. Modern Opt. 48(7), 1161–1170 (2001)CrossRefGoogle Scholar
  141. 141.
    Yuan, B., Sun, X., Zhou, Z., Li, Y., Jiang, Y., Hou, C.: Theory of space-charge field with a moving fringe in photorefractive polymers. J. Appl. Phys. 89(11), 5881–5888 (2001)CrossRefGoogle Scholar
  142. 142.
    Yuan, B.H., Sun, X.D., Jiang, Y.Y., Zhou, Z.X., Hou, C.F., Li, Y.: Comparisons between two models of the formation of space charge field in photorefractive polymers. Phys. Lett. A 292(6), 338–348 (2002)CrossRefGoogle Scholar
  143. 143.
    Grunnet-Jepsen, A., Wright, D., Smith, B., Bratcher, M.S., DeClue, M.S., Siegel, J.S., et al.: Spectroscopic determination of trap density in C 60-sensitized photorefractive polymers. Chem. Phys. Lett. 291, 553–561 (1998)CrossRefGoogle Scholar
  144. 144.
    Grunnet-Jepsen, A., Thompson, C.L., Twieg, R.J., Moerner, W.E.: High performance photorefractive polymers with improved stability. Appl. Phys. Lett. 70(12), 1515–1517 (1997)CrossRefGoogle Scholar
  145. 145.
    Grunnet-Jepsen, A., Thompson, C.L., Twieg, R.J., Moerner, W.E.: Amplified scattering in a high-gain photorefractive polymer. J. Opt. Soc. Am. B 15(2), 901–904 (1998)CrossRefGoogle Scholar
  146. 146.
    Meerholz, K., Mecher, E., Bittner, R., De Nardin, Y.: Competing photorefractive gratings in organic thin-film devices. J. Opt. Soc. Am. B 15(7), 2114–2124 (1998)CrossRefGoogle Scholar
  147. 147.
    Binks, D.J., Khand, K., West, D.P.: Reorientation of chromophores in dispersive photorefractive polymers. J. Opt. Soc. Am. B 18(3), 308–312 (2001)CrossRefGoogle Scholar
  148. 148.
    Zhang, Y., Cui, Y., Prasad, P.N.: Observation of photorefractivity in a fullerene-doped polymer composite. Phys. Rev. B 46(15), 9900–9902 (1992)CrossRefGoogle Scholar
  149. 149.
    Moon, I.K., Choi, J., Kim, N.: High-performance photorefractive composite based on non-conjugated main-chain, hole-transporting polymer. Macromol. Chem. Phys. 214(4), 478–485 (2013)CrossRefGoogle Scholar
  150. 150.
    Peng, Z., Gharavi, A.R., Yu, L.: Synthesis and characterization of photorefractive polymers containing transition metal complexes as photosensitizer. J. Am. Chem. Soc. 119(20), 4622–4632 (1997)CrossRefGoogle Scholar
  151. 151.
    Aiello, I., Dattilo, D., Ghedini, M., Bruno, A., Termine, R., Golemme, A.: Cyclopalladated complexes as photorefractive materials with high refractive index modulation. Adv. Mater. 14(17), 1233–1236 (2002)CrossRefGoogle Scholar
  152. 152.
    Binks, D.J., Bant, S.P., West, D.P., O’Brien, P., Malik, M.A.: CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. J. Modern Opt. 50(2), 299–310 (2003)Google Scholar
  153. 153.
    Fuentes-Hernandez, C., Suh, D.J., Kippelen, B., Marder, S.R.: High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles. Appl. Phys. Lett. 85(4), 534–536 (2004)CrossRefGoogle Scholar
  154. 154.
    Hendrickx, E., Kippelen, B., Thayumanavan, S., Marder, S.R., Persoons, A., Peyghambarian, N.: High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. J. Chem. Phys. 112(21), 9557–9561 (2000)CrossRefGoogle Scholar
  155. 155.
    Wang, Y.: Photoconductivity of fullerene-doped polymers. Nature 356(6370), 585–587 (1992)CrossRefGoogle Scholar
  156. 156.
    Silence, S.M., Donckers, J.M., Walsh, C.A., Twieg, R.J., Moerner, W.E.: Optical properties of poly (N-vynilcarbazole)-based guest-host photorefractive polymer systems. Appl. Optics 33(11), 2218–2222 (1994)CrossRefGoogle Scholar
  157. 157.
    Ogino, K., Nomura, T., Shichi, T., Park, S.-H., Sato, H.: Synthesis of polymers having tetraphenyldiaminobiphenyl units for a host polymer of photorefractive composite. Chem. Mater. 9, 2768–2775 (1997)CrossRefGoogle Scholar
  158. 158.
    Zhang, Y.D., Wada, T., Sasabe, H.: Carbazole photorefractive materials. J. Mater. Chem. 8(4), 809–828 (1998)CrossRefGoogle Scholar
  159. 159.
    Bolink, H.J., Arts, C., Krasnikov, V.V., Malliaras, G.G., Hadziioannou, G.: Novel bifunctional molecule for photorefractive materials. Chem. Mater. 9(6), 1407–1413 (1997)CrossRefGoogle Scholar
  160. 160.
    Eralp, M., Thomas, J., Tay, S., Li, G., Meredith, G., Schulzgen, A., et al.: High-performance photorefractive polymer operating at 975 nm. Appl. Phys. Lett. 85(7), 1095–1097 (2004)CrossRefGoogle Scholar
  161. 161.
    Tsutsumi, N., Kinashi, K., Masumura, K., Kono, K.: Photorefractive performance of poly(triarylamine)-based polymer composites: an approach from the photoconductive properties. J. Polym. Sci. B 53(7), 502–508 (2015)CrossRefGoogle Scholar
  162. 162.
    Hofmann, U., Grasruck, M., Schreiber, A., Schloter, S., Hohle, C., Strohriegl, P., et al.: Correlation between dispersivity of charge transport and holographic response time in organic photorefractive glass. J. Phys. Chem. B 104, 3887–3891 (2000)CrossRefGoogle Scholar
  163. 163.
    Redecker, M., Bradley, D.D.C., Inbasekaran, M., Wu, W.W., Woo, E.P.: High mobility hole transport fluorene-triarylamine copolymers. Adv. Mater. 11(3), 241–246 (1999)CrossRefGoogle Scholar
  164. 164.
    Hofmann, U., Schreiber, A., Haarer, D., Zilker, S.J., Bacher, A., Bradley, D.D.C., et al.: Investigations on the grating dynamics in a fast photorefractive guest–host polymer. Chem. Phys. Lett. 311(1–2), 41–46 (1999)CrossRefGoogle Scholar
  165. 165.
    Cao, Z., Tsuchiya, K., Ogino, K.: Fast photorefractive response in triphenylamine-based molecular glass. Chem. Lett. 41(11), 1541–1543 (2012)CrossRefGoogle Scholar
  166. 166.
    Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene. High Energy Chem. 47(2), 46–52 (2013)CrossRefGoogle Scholar
  167. 167.
    Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., et al.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99(4), 643–648 (2005)CrossRefGoogle Scholar
  168. 168.
    Lingam, N.K., Kalghatgi, S., Winiarz, J.G.: Enhanced photorefractivity in a polymeric composite photosensitized with carbon nanotubes grafted to a photoconductive polymer. J. Appl. Phys. 109(2), 023106 (2011)CrossRefGoogle Scholar
  169. 169.
    Chantharasupawong, P., Christenson, C.W., Philip, R., Zhai, L., Winiarz, J., Yamamoto, M., et al.: Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite. J. Mater. Chem. C 2(36), 7639–7647 (2014)CrossRefGoogle Scholar
  170. 170.
    Gallego-Gómez, F., Quintana, J.A., Villalvilla, J.M., Díaz-García, M.A., Martín-Gomis, L., Fernández-Lázaro, F., et al.: Phthalocyanines as efficient sensitizers in low-Tg hole-conducting photorefractive polymer composites. Chem. Mater. 21(13), 2714–2720 (2009)CrossRefGoogle Scholar
  171. 171.
    Köber, S., Prauzner, J., Salvador, M., Kooistra, F.B., Hummelen, J.C., Meerholz, K.: 1064-nm sensitive organic photorefractive composites. Adv. Mater. 22(12), 1383–1386 (2010)CrossRefGoogle Scholar
  172. 172.
    Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)CrossRefGoogle Scholar
  173. 173.
    Wang, Y., Herron, N.: Photoconductivity of CdS nanocluster-doped polymers. Chem. Phys. Lett. 200(1–2), 71–75 (1992)CrossRefGoogle Scholar
  174. 174.
    Milliron, D.J., Alivisatos, A.P., Pitois, C., Edder, C., Fréchet, J.M.J.: Electroactive surfactant designed to mediate electron transfer between CdSe Nanocrystals and organic semiconductors. Adv. Mater. 15(1), 58–61 (2003)CrossRefGoogle Scholar
  175. 175.
    Winiarz, J.G., Zhang, L.M., Lal, M., Friend, C.S., Prasad, P.N.: Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem. Phys. 245(1–3), 417–428 (1999)CrossRefGoogle Scholar
  176. 176.
    Binks, D.J., West, D.P., Norager, S., O’Brien, P.: Field-independent grating formation rate in a photorefractive polymer composite sensitized by CdSe quantum dots. J. Chem. Phys. 117(15), 7335–7341 (2002)CrossRefGoogle Scholar
  177. 177.
    Fears, T.M., Anderson, C., Winiarz, J.G.: Photorefractivity in a polymeric composite photosensitized with NiS nanocrystals. J. Chem. Phys. 129, 15 (2008)CrossRefGoogle Scholar
  178. 178.
    Winiarz, J.G., Zhang, L., Park, J., Prasad, P.N.: Inorganic: organic hybrid nanocomposites for photorefractivity at communication wavelengths. J. Phys. Chem. B 106(5), 967–970 (2002)CrossRefGoogle Scholar
  179. 179.
    Aslam, F., Stevenson-Hill, J., Binks, D.J., Daniels, S., Pickett, N.L., O’Brien, P.: Effect of nanoparticle composition on the performance of photorefractive polymers. Chem. Phys. 334(1–3), 45–52 (2007)CrossRefGoogle Scholar
  180. 180.
    Moon, J.-S., Liang, Y., Stevens, T.E., Monson, T.C., Huber, D.L., Mahala, B.D., et al.: Off-resonance photosensitization of a photorefractive polymer composite using PbS nanocrystals. J. Phys. Chem. C 119(24), 13827–13835 (2015)CrossRefGoogle Scholar
  181. 181.
    Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., et al.: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480(7378), 504–508 (2011)CrossRefGoogle Scholar
  182. 182.
    Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., et al.: Inkjet printing of single-crystal films. Nature 475(7356), 364–367 (2011)CrossRefGoogle Scholar
  183. 183.
    Diao, Y., Tee, B.C.K., Giri, G., Xu, J., Kim, D.H., Becerril, H.A., et al.: Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12(7), 665–671 (2013)CrossRefGoogle Scholar
  184. 184.
    Lin, Y., Li, Y., Zhan, X.: Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41(11), 4245–4272 (2012)CrossRefGoogle Scholar
  185. 185.
    Shirota, Y., Kageyama, H.: Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107(4), 953–1010 (2007)CrossRefGoogle Scholar
  186. 186.
    Chiu, S.-W., Lin, L.-Y., Lin, H.-W., Chen, Y.-H., Huang, Z.-Y., Lin, Y.-T., et al.: A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. Chem. Commun. 48(13), 1857–1859 (2012)CrossRefGoogle Scholar
  187. 187.
    Wang, L., Ng, M.-K., Yu, L.: Efficient molecular photorefractive materials based on methine dyes. Appl. Phys. Lett. 78(6), 700–702 (2001)CrossRefGoogle Scholar
  188. 188.
    Ostroverkhova, O., Wright, D., Gubler, U., Moerner, W.E., He, M., Sastre-Santos, A., et al.: Recent advances in understanding and development of photorefractive polymers and glasses. Adv. Funct. Mater. 12(9), 621–629 (2002)CrossRefGoogle Scholar
  189. 189.
    Ostroverkhova, O., He, M., Twieg, R.J., Moerner, W.E.: Role of temperature in controlling performance of photorefractive organic glasses. ChemPhysChem 4(7), 732–744 (2003)CrossRefGoogle Scholar
  190. 190.
    Choi, C.-S., Moon, I.K., Kim, N.: High-performance photorefractive organic glass based on diphenylhydrazone. Appl. Phys. Lett. 94(5), 053302 (2009)CrossRefGoogle Scholar
  191. 191.
    Zhang, L., Xu, S., Yang, Z., Cao, S.: Photorefractive effect in triphenylamine-based monolithic molecular glasses with low Tg. Mater. Chem. Phys. 126(3), 804–810 (2011)CrossRefGoogle Scholar
  192. 192.
    Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., Mohialdin Khaffaf, S.: Low-k Insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13(3), 199–204 (2003)CrossRefGoogle Scholar
  193. 193.
    McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., et al.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333 (2006)CrossRefGoogle Scholar
  194. 194.
    Hamadani, B.H., Gundlach, D.J., McCulloch, I., Heeney, M.: Undoped polythiophene field-effect transistors with mobility of 1cm2V-1s-1. Appl. Phys. Lett. 91(24), 243512 (2007)CrossRefGoogle Scholar
  195. 195.
    Havinga, E.E., ten Hoeve, W., Wynberg, H.: A new class of small band gap organic polymer conductors. Polym. Bull. 29(1–2), 119–126 (1992)CrossRefGoogle Scholar
  196. 196.
    Havinga, E.E., ten Hoeve, W., Wynberg, H.: Alternate donor-acceptor small-band-gap semiconducting polymers; polysquaraines and polycroconaines. Synth. Met. 55(1), 299–306 (1993)CrossRefGoogle Scholar
  197. 197.
    Pandey, L., Risko, C., Norton, J.E., Brédas, J.-L.: Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45(16), 6405–6414 (2012)CrossRefGoogle Scholar
  198. 198.
    Mühlbacher, D., Scharber, M., Morana, M., Zhu, Z., Waller, D., Gaudiana, R., et al.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18(21), 2884–2889 (2006)CrossRefGoogle Scholar
  199. 199.
    Zhang, M., Tsao, H.N., Pisula, W., Yang, C., Mishra, A.K., Müllen, K.: Field-effect transistors based on a benzothiadiazole–cyclopentadithiophene copolymer. J. Am. Chem. Soc. 129(12), 3472–3473 (2007)CrossRefGoogle Scholar
  200. 200.
    Wang, S., Kappl, M., Liebewirth, I., Müller, M., Kirchhoff, K., Pisula, W., et al.: Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24(3), 417–420 (2012)CrossRefGoogle Scholar
  201. 201.
    Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., et al.: A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230), 679–686 (2009)CrossRefGoogle Scholar
  202. 202.
    Lei, T., Dou, J.-H., Pei, J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24(48), 6457–6461 (2012)CrossRefGoogle Scholar
  203. 203.
    Zhang, W., Smith, J., Watkins, S.E., Gysel, R., McGehee, M., Salleo, A., et al.: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132(33), 11437–11439 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations