Charge Transport and Photogeneration in Organic Semiconductors: Photorefractives and Beyond
- 757 Downloads
Abstract
Over the last decade, the science and technology of organic semiconductors has seen tremendous progress. The electrical and optical properties displayed by state-of-the-art organic semiconductors are remarkable in their tolerance to disorder, their ability to display high charge carrier mobility values and bipolar transport, and in that they can be engineered to display optical activity in the spectral range from the visible to the near-infrared. This new breed of organic materials is forcing us to reevaluate preconceived notions on how to optimize charge transport and photogeneration in disordered organic semiconductors. Lessons learned in the development of these remarkable organic semiconductors have rapidly spread across organic optoelectronic device platforms, from organic photovoltaics to organic field-effect transistors to organic light emitting diodes and to organic photodetectors, and thus are expected to provide further inspiration to continue advancing the science and technology of organic photorefractives. The purpose of this chapter is to provide a broad overview of current understanding of charge transport and photogeneration in organic semiconductors, going from crystalline to amorphous solids as well as to provide a brief overview of novel organic photoconductors that may offer significant opportunities to advance the science and technology of organic optoelectronic devices in general and of organic photorefractives in particular.
Keywords
High Occupy Molecular Orbital Charge Transport Organic Semiconductor Frenkel Exciton Photorefractive MaterialReferences
- 1.Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., et al.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497–500 (2007)CrossRefGoogle Scholar
- 2.Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., et al.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014)CrossRefGoogle Scholar
- 3.Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., et al.: Small-molecule solar cells with efficiency over 9%. Nat. Photon. 9(1), 35–41 (2015)CrossRefGoogle Scholar
- 4.Zhang, X., Bronstein, H., Kronemeijer, A.J., Smith, J., Kim, Y., Kline, R.J., et al.: Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nat. Commun. 4, 2238 (2013)Google Scholar
- 5.Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., et al.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26(19), 2993–2998 (2014)CrossRefGoogle Scholar
- 6.Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C.B., Chen, J., et al.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014)Google Scholar
- 7.Venkateshvaran, D., Nikolka, M., Sadhanala, A., Lemaur, V., Zelazny, M., Kepa, M., et al.: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014)CrossRefGoogle Scholar
- 8.Bürgi, L., Turbiez, M., Pfeiffer, R., Bienewald, F., Kirner, H.-J., Winnewisser, C.: High-mobility ambipolar near-infrared light-emitting polymer field-effect transistors. Adv. Mater. 20(11), 2217–2224 (2008)CrossRefGoogle Scholar
- 9.Gong, X., Tong, M., Xia, Y., Cai, W., Moon, J.S., Cao, Y., et al.: High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325(5948), 1665–1667 (2009)CrossRefGoogle Scholar
- 10.Armin, A., Hambsch, M., Kim, I.K., Burn, P.L., Meredith, P., Namdas, E.B.: Thick junction broadband organic photodiodes. Laser Photon. Rev. 8(6), 924–932 (2014)CrossRefGoogle Scholar
- 11.Armin, A., Jansen-van Vuuren, R.D., Kopidakis, N., Burn, P.L., Meredith, P.: Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun. 6, 6343 (2015)CrossRefGoogle Scholar
- 12.Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., et al.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 13, 233 (1966)Google Scholar
- 13.Sutter, K., Gunter, P.: Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. J. Opt. Soc. Am. B 7(12), 2274 (1990)CrossRefGoogle Scholar
- 14.Sutter, K., Hullinger, J., Günter, P.: Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Commun. 74(8), 867–870 (1990)CrossRefGoogle Scholar
- 15.Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66(14), 1846–1849 (1991)CrossRefGoogle Scholar
- 16.Tamura, K., Padias, A.B., Hall Jr., H.K., Peyghambarian, N.: New polymeric material containing the tricyanovinylcarbazole group for photorefractive applications. Appl. Phys. Lett. 60(15), 1803–1805 (1992)CrossRefGoogle Scholar
- 17.Winiarz, J.G., Zhang, L.M., Lal, M., Friend, C.S., Prasad, P.N.: Observation of the photorefractive effect in a hybrid organic-inorganic nanocomposite. J. Am. Chem. Soc. 121(22), 5287–5295 (1999)CrossRefGoogle Scholar
- 18.Lundquist, P.M., Wortmann, R., Geletneky, C., Twieg, R.J., Jurich, M., Lee, V.Y., et al.: Organic glasses: a new class of photorefractive materials. Science 274(5290), 1182–1185 (1996)CrossRefGoogle Scholar
- 19.Khoo, I.C., Li, H., Liang, Y.: Observation of orientational photorefractive effects in nematic liquid crystals. Opt. Lett. 19(21), 1723–1725 (1994)CrossRefGoogle Scholar
- 20.Marder, S.R., Kippelen, B., Jen, A.K.Y., Peyghambarian, N.: Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature (London) 388, 845–851 (1997)CrossRefGoogle Scholar
- 21.Kippelen, B., Meyers, F., Peyghambarian, N., Marder, S.R.: Chromophore design for photorefractive applications. J. Am. Chem. Soc. 119(19), 4559–4560 (1997)CrossRefGoogle Scholar
- 22.Meerholz, K., De Nardin, Y., Bittner, R.: Improved performance of photorefractive polymers based on merocyanine dyes in a polar matrix. Appl. Phys. Lett. 73(1), 4–6 (1998)CrossRefGoogle Scholar
- 23.Wright, D., Diaz-Garcia, M.A., Casperson, J.D., DeClue, M., Moerner, W.E., Twieg, R.J.: High-speed photorefractive polymer composites. Appl. Phys. Lett. 73(11), 1490–1492 (1998)CrossRefGoogle Scholar
- 24.Barzoukas, M., Blanchard-Desce, M.: Figures of merit of push-pull molecules in photorefractive polymers. J. Chem. Phys. 112(4), 2036–2044 (2000)CrossRefGoogle Scholar
- 25.Würthner, F., Wortmann, R., Meerholz, K.: Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002)CrossRefGoogle Scholar
- 26.Herlocker, J.A., Ferrio, K.B., Hendrickx, E., Guenther, B.D., Mery, S., Kippelen, B., et al.: Direct observation of orientation limit in a fast photorefractive polymer composite. Appl. Phys. Lett. 74(16), 2253–2255 (1999)CrossRefGoogle Scholar
- 27.Van Steenwinckel, D., Hendrickx, E., Samyn, C., Engels, C., Persoons, A.: Effect of plasticizer and temperature on the photorefractive phase shift in fully functionalized polymethacrylates. J. Mater. Chem. 10(12), 2692–2697 (2000)CrossRefGoogle Scholar
- 28.Moerner, W.E., Silence, S.M., Hache, F., Bjorklund, G.C.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11(2), 320 (1994)CrossRefGoogle Scholar
- 29.Meerholz, K., Volodin, B.L., Sandalphon, Kippelen, B., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371(6497), 497–500 (1994)CrossRefGoogle Scholar
- 30.Eralp, M., Thomas, J., Tay, S., Schulzgen, G.L.A., Norwood, R.A., Yamamoto, M., et al.: Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure. Appl. Phys. Lett. 89, 11 (2006)CrossRefGoogle Scholar
- 31.Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., et al.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320), 80–83 (2010)CrossRefGoogle Scholar
- 32.Tay, S., Blanche, P.-A., Voorakaranam, R., Tunc, A., Lin, W., Rokutanda, S., et al.: An updatable holographic three-dimensional display. Nature 451(7179), 694–698 (2008)CrossRefGoogle Scholar
- 33.Morrison, R.T.: Organic Chemistry, 5th edn. Allyn and Bacon, Boston (1987)Google Scholar
- 34.Ibach, H.: Solid-State Physics: An Introduction to Principles of Materials Science. Springer, Berlin (2010)Google Scholar
- 35.Kirchartz, T., Nelson, J.: Device modelling of organic bulk heterojunction solar cells. In: Beljonne, D., Cornil, J. (eds.) Multiscale Modelling of Organic and Hybrid Photovoltaics, vol. 352, pp. 279–324. Springer, Berlin (2014)Google Scholar
- 36.Brédas, J.L., Calbert, J.P., da Silva Filho, D.A., Cornil, J.: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. 99(9), 5804–5809 (2002)CrossRefGoogle Scholar
- 37.Bredas, J.-L.: Mind the gap! Mater. Horiz. 1(1), 17–19 (2014)CrossRefGoogle Scholar
- 38.Noriega, R., Rivnay, J., Vandewal, K., Koch, F.P.V., Stingelin, N., Smith, P., et al.: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12(11), 1038–1044 (2013)CrossRefGoogle Scholar
- 39.Guillet, J.: Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules. Cambridge University Press, Cambridge (1985)Google Scholar
- 40.Sirringhaus, H.: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)CrossRefGoogle Scholar
- 41.Troisi, A.: Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv. Mater. 19(15), 2000–2004 (2007)CrossRefGoogle Scholar
- 42.Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.-L.: Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
- 43.Ashcroft, N.W.: Solid State Physics. Saunders College, Philadelphia (1976)Google Scholar
- 44.Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken (2005)Google Scholar
- 45.Kao, K.-C.: Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Processes. Academic Press, Amsterdam (2004)Google Scholar
- 46.Bandyopadhyay, S.: Physics of Nanostructured Solid State Devices. Springer, New York (2012)CrossRefGoogle Scholar
- 47.Lynn, B., Blanche, P.-A., Peyghambarian, N.: Photorefractive polymers for holography. J. Polym. Sci. B 52(3), 193–231 (2014)CrossRefGoogle Scholar
- 48.Köber, S., Salvador, M., Meerholz, K.: Organic photorefractive materials and applications. Adv. Mater. 23(41), 4725–4763 (2011)CrossRefGoogle Scholar
- 49.Anderson, P.W.: Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34(15), 953–955 (1975)CrossRefGoogle Scholar
- 50.Belitz, D., Kirkpatrick, T.R.: The Anderson-Mott transition. Rev. Mod. Phys. 66(2), 261–380 (1994)CrossRefGoogle Scholar
- 51.Lu, G., Blakesley, J., Himmelberger, S., Pingel, P., Frisch, J., Lieberwirth, I., et al.: Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013)CrossRefGoogle Scholar
- 52.Hwang, D.K., Fuentes-Hernandez, C., Fenoll, M., Yun, M., Park, J., Shim, J.W., et al.: Systematic reliability study of top-gate p-and n-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 3378–3386 (2014)CrossRefGoogle Scholar
- 53.Lous, E.J., Blom, P.W.M., Molenkamp, L.W., de Leeuw, D.M.: Schottky contacts on a highly doped organic semiconductor. Phys. Rev. B 51(23), 17251–17254 (1995)CrossRefGoogle Scholar
- 54.Qi, Y., Sajoto, T., Kröger, M., Kandabarow, A.M., Park, W., Barlow, S., et al.: A molybdenum dithiolene complex as p-dopant for hole-transport materials: a multitechnique experimental and theoretical investigation. Chem. Mater. 22(2), 524–531 (2009)CrossRefGoogle Scholar
- 55.Guo, S., Kim, S.B., Mohapatra, S.K., Qi, Y., Sajoto, T., Kahn, A., et al.: n-Doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24(5), 699–703 (2012)CrossRefGoogle Scholar
- 56.Lüssem, B., Riede, M., Leo, K.: Doping of organic semiconductors. Phys Status Solidi A 210(1), 9–43 (2013)CrossRefGoogle Scholar
- 57.Wellmann, P., Hofmann, M., Zeika, O., Werner, A., Birnstock, J., Meerheim, R., et al.: High-efficiency p-i-n organic light-emitting diodes with long lifetime. J. Soc. Inf..Display 13(5), 393–397 (2005)CrossRefGoogle Scholar
- 58.Gao, Z.Q., Mi, B.X., Xu, G.Z., Wan, Y.Q., Gong, M.L., Cheah, K.W., et al.: An organic p-type dopant with high thermal stability for an organic semiconductor. Chem. Commun. 1, 117–119 (2008)CrossRefGoogle Scholar
- 59.Olthof, S., Mehraeen, S., Mohapatra, S.K., Barlow, S., Coropceanu, V., Brédas, J.-L., et al.: Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109(17), 176601 (2012)CrossRefGoogle Scholar
- 60.Olthof, S., Singh, S., Mohapatra, S.K., Barlow, S., Marder, S.R., Kippelen, B., et al.: Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Appl. Phys. Lett. 101(25), 253303 (2012)CrossRefGoogle Scholar
- 61.Pingel, P., Neher, D.: Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87(11), 115209 (2013)CrossRefGoogle Scholar
- 62.Kim, G.H., Shao, L., Zhang, K., Pipe, K.P.: Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12(8), 719–723 (2013)CrossRefGoogle Scholar
- 63.Kido, J., Matsumoto, T.: Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl. Phys. Lett. 73, 2866–2868 (1998)CrossRefGoogle Scholar
- 64.Gao, W., Kahn, A.: Electrical doping: the impact on interfaces of π -conjugated molecular films. J. Phys. Condens. Matter 15(38), S2757 (2003)CrossRefGoogle Scholar
- 65.Abe, Y., Hasegawa, T., Takahashi, Y., Yamada, T., Tokura, Y.: Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors. Appl. Phys. Lett. 87(15), 153506 (2005)CrossRefGoogle Scholar
- 66.Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A.J., Li, H., et al.: A universal method to produce low–work function electrodes for organic electronics. Science 336(6079), 327–332 (2012)CrossRefGoogle Scholar
- 67.Dai, A., Zhou, Y., Shu, A.L., Mohapatra, S.K., Wang, H., Fuentes‐Hernandez, C., et al.: Enhanced charge‐carrier injection and collection via lamination of doped polymer layers p‐doped with a solution‐processible molybdenum complex. Adv. Funct. Mater. 24(15), 2197–2204 (2014)CrossRefGoogle Scholar
- 68.Wetzelaer, G.A.H., Koster, L.J.A., Blom, P.W.M.: Validity of the Einstein relation in disordered organic semiconductors. Phys. Rev. Lett. 107, 6 (2011)CrossRefGoogle Scholar
- 69.Li, L., Lu, N., Liu, M., Bässler, H.: General Einstein relation model in disordered organic semiconductors under quasiequilibrium. Phys. Rev. B 90(21), 214107 (2014)CrossRefGoogle Scholar
- 70.Holstein, T.: Studies of polaron motion: part II. The “small” polaron. Ann. Phys. 8(3), 343–389 (1959)CrossRefGoogle Scholar
- 71.Holstein, T.: Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)CrossRefGoogle Scholar
- 72.Hannewald, K., Bobbert, P.A.: Ab initio theory of charge-carrier conduction in ultrapure organic crystals. Appl. Phys. Lett. 85(9), 1535–1537 (2004)CrossRefGoogle Scholar
- 73.Borsenberger, P.M., Magin, E.H., Van der Auweraer, M., De Schryver, F.C.: The role of disorder on charge transport in molecularly doped polymers and related materials. Phys. Status Solidi A 140, 9–45 (1993)CrossRefGoogle Scholar
- 74.Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 120(3), 745–755 (1960)CrossRefGoogle Scholar
- 75.Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938)CrossRefGoogle Scholar
- 76.Schein, L.B., Peled, A., Glatz, D.: The electric field dependence of the mobility in molecularly doped polymers. J. Appl. Phys. 66(2), 686–692 (1989)CrossRefGoogle Scholar
- 77.Coehoorn, R., Bobbert, P.A.: Physics of Organic Semiconductors, 2nd completely new rev. edn. Wiley-VCH, Weinheim (2012)Google Scholar
- 78.Bässler, H.: Charge transport in molecularly doped polymers. Philos. Mag. B Phys. Condensed Matter Stat. Mech. Electron. Opt. Magn. Prop. 50(3), 347–362 (1984)Google Scholar
- 79.Bässler, H.: Charge transport in disordered organic photoconductors—a Monte-Carlo simulation study. Phys. Status Solidi B 175(1), 15–56 (1993)CrossRefGoogle Scholar
- 80.Bässler, H.: Nondispersive and dispersive transport in random organic photoconductors. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 252, 11–21 (1994)CrossRefGoogle Scholar
- 81.Vanderauweraer, M., Deschryver, F.C., Borsenberger, P.M., Bassler, H.: Disorder in charge-transport in doped polymers. Adv. Mater. 6(3), 199–213 (1994)CrossRefGoogle Scholar
- 82.Goonesekera, A., Ducharme, S.: Effect of dipolar molecules on carrier mobilities in photorefractive polymer. J. Appl. Phys. 85(9), 6506–6514 (1999)CrossRefGoogle Scholar
- 83.Dieckmann, A., Bassler, H., Borsenberger, P.M.: An assessment of the role of dipoles on the density-of-states function of disordered molecular-solids. J. Chem. Phys. 99(10), 8136–8141 (1993)CrossRefGoogle Scholar
- 84.Young, R.H.: Dipolar lattice model of disorder in random media analytical evaluation of the Gaussian disorder model. Philos. Mag. Part B 72(4), 435–457 (1995)CrossRefGoogle Scholar
- 85.Hirao, A., Nishizawa, H.: Effect of dipoles on carrier drift and diffusion of molecularly doped polymers. Phys. Rev. B 56(6), R2904–R2907 (1997)CrossRefGoogle Scholar
- 86.Dunlap, D.H., Parris, P.E., Kenkre, V.M.: Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys. Rev. Lett. 77(3), 542 (1996)CrossRefGoogle Scholar
- 87.Maldonado, J.L., Bishop, M., Fuentes-Hernandez, C., Caron, P., Domercq, B., Zhang, Y.D., et al.: Effect of substitution on the hole mobility of bis(diarylamino)biphenyl derivatives doped in poly(styrene). Chem. Mater. 15(4), 994–999 (2003)CrossRefGoogle Scholar
- 88.Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., Vannikov, A.V.: Essential role of correlations in governing charge transport in disordered organic materials. Phys. Rev. Lett. 81(20), 4472 (1998)CrossRefGoogle Scholar
- 89.Fishchuk, I.I., Hertel, D., Bässler, H., Kadashchuk, A.K.: Effective-medium theory of hopping charge-carrier transport in weakly disordered organic solids. Phys. Rev. B 65(12), 125201 (2002)CrossRefGoogle Scholar
- 90.Fishchuk, I.I., Kadashchuk, A.K., Bassler, H., Weiss, D.S.: Nondispersive charge-carrier transport in disordered organic materials containing traps. Phys. Rev. B 66, 20 (2002)CrossRefGoogle Scholar
- 91.Arkhipov, V.I., Reynaert, J., Jin, Y.D., Heremans, P., Emelianova, E.V., Adriaenssens, G.J., et al.: The effect of deep traps on carrier hopping in disordered organic materials. Synth. Met. 138(1–2), 209–212 (2003)CrossRefGoogle Scholar
- 92.Parris, P.E., Kenkre, V.M., Dunlap, D.H.: Nature of charge carriers in disordered molecular solids: are polarons compatible with observations? Phys. Rev. Lett. 87(12), 126601 (2001)CrossRefGoogle Scholar
- 93.Fishchuk, I.I., Kadashchuk, A., Bassler, H., Nespurek, S.: Nondispersive polaron transport in disordered organic solids. Phys. Rev. B 67, 22 (2003)CrossRefGoogle Scholar
- 94.Sirringhaus, H., Tessler, N., Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998)CrossRefGoogle Scholar
- 95.Salleo, A., Chen, T.W., Völkel, A.R., Wu, Y., Liu, P., Ong, B.S., et al.: Intrinsic hole mobility and trapping in a regioregular poly(thiophene). Phys. Rev. B 70(11), 115311 (2004)CrossRefGoogle Scholar
- 96.Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72(15), 155206 (2005)CrossRefGoogle Scholar
- 97.Coehoorn, R.: Hopping mobility of charge carriers in disordered organic host-guest systems: dependence on the charge-carrier concentration. Phys. Rev. B 75(15), 155203 (2007)CrossRefGoogle Scholar
- 98.Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., et al.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94(20), 206601–206604 (2005)CrossRefGoogle Scholar
- 99.Zhou, J., Zhou, Y.C., Zhao, J.M., Wu, C.Q., Ding, X.M., Hou, X.Y.: Carrier density dependence of mobility in organic solids: a Monte Carlo simulation. Phys. Rev. B 75(15), 153201 (2007)CrossRefGoogle Scholar
- 100.Bässler, H., Köhler, A.: Charge transport in organic semiconductors. In: Metzger, R.M. (ed.) Unimolecular and supramolecular electronics I, vol. 312, pp. 1–65. Springer, Berlin (2012)CrossRefGoogle Scholar
- 101.Herlocker, J.A., Fuentes-Hernandez, C., Ferrio, K.B., Hendrickx, E., Blanche, P.A., Peyghambarian, N., et al.: Stabilization of the response time in photorefractive polymers. Appl. Phys. Lett. 77(15), 2292–2294 (2000)CrossRefGoogle Scholar
- 102.Ostroverkhova, O., Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys. 92(4), 1727–1743 (2002)CrossRefGoogle Scholar
- 103.Fuentes-Hernandez, C., Thomas, J., Termine, R., Meredith, G., Peyghambarian, N., Kippelen, B., et al.: Video-rate compatible photorefractive polymers with stable dynamic properties under continuous operation. Appl. Phys. Lett. 85(11), 1877–1879 (2004)CrossRefGoogle Scholar
- 104.Thomas, J., Fuentes-Hernandez, C., Yamamoto, M., Cammack, K., Matsumoto, K., Walker, G.A., et al.: Bistriarylamine polymer-based composites for photorefractive applications. Adv. Mater. 16(22), 2032–2036 (2004)CrossRefGoogle Scholar
- 105.Mecher, E., Gallego-G¢mez, F., Tillmann, H., Horhold, H.-H., Hummelen, J. C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002).Google Scholar
- 106.Kulikovsky, L., Neher, D., Mecher, E., Meerholz, K., Horhold, H.H., Ostroverkhova, O.: Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite. Phys. Rev. B 69, 125216-1–125216-11 (2004)CrossRefGoogle Scholar
- 107.Mecher, E., Gallego-Gomez, F., Meerholz, K., Tillmann, H., Horhold, H.H., Hummelen, J.C.: Photophysical and redox NIR-sensitivity enhancement in photorefractive polymer composites. ChemPhysChem 5(2), 277–284 (2004)CrossRefGoogle Scholar
- 108.Kippelen, B., Blanche, P.A., Schulzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.F., et al.: Photorefractive polymers with non-destructive readout. Adv. Funct. Mater. 12(9), 615–620 (2002)CrossRefGoogle Scholar
- 109.Blanche, P.A., Kippelen, B., Schulzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.F., et al.: Photorefractive polymers sensitized by two-photon absorption. Opt. Lett. 27(1), 19–21 (2002)CrossRefGoogle Scholar
- 110.Tay, S., Thomas, J., Eralp, M., Li, G.Q., Kippelen, B., Marder, S.R., et al.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85(20), 4561–4563 (2004)CrossRefGoogle Scholar
- 111.Tay, S., Thomas, J., Eralp, M., Li, G.Q., Norwood, R.A., Schulzgen, A., et al.: High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time. Appl. Phys. Lett. 87, 17 (2005)CrossRefGoogle Scholar
- 112.Nolt, D.D. (ed.): Photorefractive effects and materials. Kluwer, Boston (1995).Google Scholar
- 113.Hendrickx, E., Zhang, Y., Ferrio, K.B., Herlocker, J.A., Anderson, J., Armstrong, N.R., et al.: Photoconductive properties of PVK-based photorefractive polymer composites doped with fluorinated stryrene chromophores. J. Mater. Chem. 9, 2251–2258 (1999)CrossRefGoogle Scholar
- 114.Däubler, T.K., Bittner, R., Meerholz, K., Cimrov, V., Neher, D.: Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials. Phys. Rev. B 61(20), 13515–13527 (2000)CrossRefGoogle Scholar
- 115.Nespurek, S., Cimrova, V., Pfleger, J., Kminek, I.: Free charge carrier formation in polymers under illumination. Polym. Adv. Technol. 7(5–6), 459–470 (1996)CrossRefGoogle Scholar
- 116.Davidenko, N.A., Zabolotnyi, M.A., Ishchenko, A.A., Kuvshinskii, N.G., Borolina, N.P.: Electric field effects on photoconductivity and electronic absorption spectra of photogeneration sites in amorphous molecular semiconductors. High Energy Chem. 38(1), 13–20 (2004)CrossRefGoogle Scholar
- 117.Onsager, L.: Initial recombination of ions. Phys. Rev. 54, 554–557 (1938)CrossRefGoogle Scholar
- 118.Islam, M.A.: Einstein–Smoluchowski diffusion equation: a discussion. Phys. Scr. 70(2–3), 120 (2004)CrossRefGoogle Scholar
- 119.Mozumder, A.: Effect of an external electric field on the yield of free ions. 1. General results from the Onsager theory. J. Chem. Phys. 60(11), 4300–4304 (1974)CrossRefGoogle Scholar
- 120.Braun, L.C.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80(9), 4157–4161 (1984)CrossRefGoogle Scholar
- 121.Noolandi, J., Hong, K.M.: Theory of photogeneration and fluorescence quenching. J. Chem. Phys. 70(7), 3230–3236 (1979)CrossRefGoogle Scholar
- 122.Marcus, R.A., Siders, P.: Theory of highly exothermic electron-transfer reactions. J. Phys. Chem. 86(5), 622–630 (1982)CrossRefGoogle Scholar
- 123.Marcus, R.A.: Electron-transfer reactions in chemistry—theory and experiment. Rev. Mod. Phys. 65(3), 599–610 (1993)CrossRefGoogle Scholar
- 124.Wang, Y., Suna, A.: Fullerenes in photoconductive polymers. Charge generation and charge transport. J. Phys. Chem. B 101(29), 5627–5638 (1997)CrossRefGoogle Scholar
- 125.Schildkraut, J.S., Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(5), 1888–1893 (1992)CrossRefGoogle Scholar
- 126.Schildkraut, J.S., Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(11), 5055–5060 (1992)CrossRefGoogle Scholar
- 127.Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104(7), 3267–3314 (2004)CrossRefGoogle Scholar
- 128.Langevin, P.: Recombinaison et mobilites des ions dans les gaz. Ann. Chim. Phys 28, 433 (1903)Google Scholar
- 129.Silver, M., Sharma, R.: Carrier generation and recombination in anthracene. J. Chem. Phys. 46(2), 692–696 (1967)CrossRefGoogle Scholar
- 130.Albrecht, U., Bassler, H.: Langevin-type charge-carrier recombination in a disordered hopping system. Phys. Status Solidi B 191(2), 455–459 (1995)CrossRefGoogle Scholar
- 131.Nenashev, A.V., Jansson, F., Baranovskii, S.D., Österbacka, R., Dvurechenskii, A.V., Gebhard, F.: Role of diffusion in two-dimensional bimolecular recombination. Appl. Phys. Lett. 96(21), 213304 (2010)CrossRefGoogle Scholar
- 132.Greenham, N.C., Bobbert, P.A.: Two-dimensional electron-hole capture in a disordered hopping system. Phys. Rev. B 68(24), 245301 (2003)CrossRefGoogle Scholar
- 133.Adriaenssens, G.J., Arkhipov, V.I.: Non-Langevin recombination in disordered materials with random potential distributions. Solid State Commun. 103(9), 541–543 (1997)CrossRefGoogle Scholar
- 134.Nelson, J.: Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys. Rev. B 67(15), 155209 (2003)CrossRefGoogle Scholar
- 135.Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. 1. Steady-state. Ferroelectrics 22(3–4), 949–960 (1979)Google Scholar
- 136.Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. 2. Beam coupling-light amplification. Ferroelectrics 22(3–4), 961–964 (1979)Google Scholar
- 137.Fuentes-Hernandez, C., Thomas, J., Meredith, G.R., Peyghambarian, N.N., Marder, S.R., Kippelen, B.: Trapping mechanisms and dynamics in bis-triarylamine-based photorefractive polymer composites. In: Organic Holographic Materials and Applications II, Denver, CO, USA, pp. 96–102 (2004).Google Scholar
- 138.Cui, Y., Swedek, B., Cheng, N., Zieba, J., Prasad, P.N.: Dynamics of photorefractive grating erasure in polymeric composites. J. Appl. Phys. 85(1), 38–43 (1999)CrossRefGoogle Scholar
- 139.Yuan, B., Sun, X., Hou, C., Li, Y., Zhou, Z., Jiang, Y., et al.: Kinetics of the formation of space-charge field in photorefractive polymers. J. Appl. Phys. 88(10), 5562–5569 (2000)CrossRefGoogle Scholar
- 140.Yuan, B., Sun, X., Jiang, Y., Hou, C., Zhou, Z.: Effect of the applied electric field on the steady state and temporary state space-charge field in photorefractive polymers. J. Modern Opt. 48(7), 1161–1170 (2001)CrossRefGoogle Scholar
- 141.Yuan, B., Sun, X., Zhou, Z., Li, Y., Jiang, Y., Hou, C.: Theory of space-charge field with a moving fringe in photorefractive polymers. J. Appl. Phys. 89(11), 5881–5888 (2001)CrossRefGoogle Scholar
- 142.Yuan, B.H., Sun, X.D., Jiang, Y.Y., Zhou, Z.X., Hou, C.F., Li, Y.: Comparisons between two models of the formation of space charge field in photorefractive polymers. Phys. Lett. A 292(6), 338–348 (2002)CrossRefGoogle Scholar
- 143.Grunnet-Jepsen, A., Wright, D., Smith, B., Bratcher, M.S., DeClue, M.S., Siegel, J.S., et al.: Spectroscopic determination of trap density in C 60-sensitized photorefractive polymers. Chem. Phys. Lett. 291, 553–561 (1998)CrossRefGoogle Scholar
- 144.Grunnet-Jepsen, A., Thompson, C.L., Twieg, R.J., Moerner, W.E.: High performance photorefractive polymers with improved stability. Appl. Phys. Lett. 70(12), 1515–1517 (1997)CrossRefGoogle Scholar
- 145.Grunnet-Jepsen, A., Thompson, C.L., Twieg, R.J., Moerner, W.E.: Amplified scattering in a high-gain photorefractive polymer. J. Opt. Soc. Am. B 15(2), 901–904 (1998)CrossRefGoogle Scholar
- 146.Meerholz, K., Mecher, E., Bittner, R., De Nardin, Y.: Competing photorefractive gratings in organic thin-film devices. J. Opt. Soc. Am. B 15(7), 2114–2124 (1998)CrossRefGoogle Scholar
- 147.Binks, D.J., Khand, K., West, D.P.: Reorientation of chromophores in dispersive photorefractive polymers. J. Opt. Soc. Am. B 18(3), 308–312 (2001)CrossRefGoogle Scholar
- 148.Zhang, Y., Cui, Y., Prasad, P.N.: Observation of photorefractivity in a fullerene-doped polymer composite. Phys. Rev. B 46(15), 9900–9902 (1992)CrossRefGoogle Scholar
- 149.Moon, I.K., Choi, J., Kim, N.: High-performance photorefractive composite based on non-conjugated main-chain, hole-transporting polymer. Macromol. Chem. Phys. 214(4), 478–485 (2013)CrossRefGoogle Scholar
- 150.Peng, Z., Gharavi, A.R., Yu, L.: Synthesis and characterization of photorefractive polymers containing transition metal complexes as photosensitizer. J. Am. Chem. Soc. 119(20), 4622–4632 (1997)CrossRefGoogle Scholar
- 151.Aiello, I., Dattilo, D., Ghedini, M., Bruno, A., Termine, R., Golemme, A.: Cyclopalladated complexes as photorefractive materials with high refractive index modulation. Adv. Mater. 14(17), 1233–1236 (2002)CrossRefGoogle Scholar
- 152.Binks, D.J., Bant, S.P., West, D.P., O’Brien, P., Malik, M.A.: CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. J. Modern Opt. 50(2), 299–310 (2003)Google Scholar
- 153.Fuentes-Hernandez, C., Suh, D.J., Kippelen, B., Marder, S.R.: High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles. Appl. Phys. Lett. 85(4), 534–536 (2004)CrossRefGoogle Scholar
- 154.Hendrickx, E., Kippelen, B., Thayumanavan, S., Marder, S.R., Persoons, A., Peyghambarian, N.: High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. J. Chem. Phys. 112(21), 9557–9561 (2000)CrossRefGoogle Scholar
- 155.Wang, Y.: Photoconductivity of fullerene-doped polymers. Nature 356(6370), 585–587 (1992)CrossRefGoogle Scholar
- 156.Silence, S.M., Donckers, J.M., Walsh, C.A., Twieg, R.J., Moerner, W.E.: Optical properties of poly (N-vynilcarbazole)-based guest-host photorefractive polymer systems. Appl. Optics 33(11), 2218–2222 (1994)CrossRefGoogle Scholar
- 157.Ogino, K., Nomura, T., Shichi, T., Park, S.-H., Sato, H.: Synthesis of polymers having tetraphenyldiaminobiphenyl units for a host polymer of photorefractive composite. Chem. Mater. 9, 2768–2775 (1997)CrossRefGoogle Scholar
- 158.Zhang, Y.D., Wada, T., Sasabe, H.: Carbazole photorefractive materials. J. Mater. Chem. 8(4), 809–828 (1998)CrossRefGoogle Scholar
- 159.Bolink, H.J., Arts, C., Krasnikov, V.V., Malliaras, G.G., Hadziioannou, G.: Novel bifunctional molecule for photorefractive materials. Chem. Mater. 9(6), 1407–1413 (1997)CrossRefGoogle Scholar
- 160.Eralp, M., Thomas, J., Tay, S., Li, G., Meredith, G., Schulzgen, A., et al.: High-performance photorefractive polymer operating at 975 nm. Appl. Phys. Lett. 85(7), 1095–1097 (2004)CrossRefGoogle Scholar
- 161.Tsutsumi, N., Kinashi, K., Masumura, K., Kono, K.: Photorefractive performance of poly(triarylamine)-based polymer composites: an approach from the photoconductive properties. J. Polym. Sci. B 53(7), 502–508 (2015)CrossRefGoogle Scholar
- 162.Hofmann, U., Grasruck, M., Schreiber, A., Schloter, S., Hohle, C., Strohriegl, P., et al.: Correlation between dispersivity of charge transport and holographic response time in organic photorefractive glass. J. Phys. Chem. B 104, 3887–3891 (2000)CrossRefGoogle Scholar
- 163.Redecker, M., Bradley, D.D.C., Inbasekaran, M., Wu, W.W., Woo, E.P.: High mobility hole transport fluorene-triarylamine copolymers. Adv. Mater. 11(3), 241–246 (1999)CrossRefGoogle Scholar
- 164.Hofmann, U., Schreiber, A., Haarer, D., Zilker, S.J., Bacher, A., Bradley, D.D.C., et al.: Investigations on the grating dynamics in a fast photorefractive guest–host polymer. Chem. Phys. Lett. 311(1–2), 41–46 (1999)CrossRefGoogle Scholar
- 165.Cao, Z., Tsuchiya, K., Ogino, K.: Fast photorefractive response in triphenylamine-based molecular glass. Chem. Lett. 41(11), 1541–1543 (2012)CrossRefGoogle Scholar
- 166.Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with graphene. High Energy Chem. 47(2), 46–52 (2013)CrossRefGoogle Scholar
- 167.Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., et al.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99(4), 643–648 (2005)CrossRefGoogle Scholar
- 168.Lingam, N.K., Kalghatgi, S., Winiarz, J.G.: Enhanced photorefractivity in a polymeric composite photosensitized with carbon nanotubes grafted to a photoconductive polymer. J. Appl. Phys. 109(2), 023106 (2011)CrossRefGoogle Scholar
- 169.Chantharasupawong, P., Christenson, C.W., Philip, R., Zhai, L., Winiarz, J., Yamamoto, M., et al.: Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite. J. Mater. Chem. C 2(36), 7639–7647 (2014)CrossRefGoogle Scholar
- 170.Gallego-Gómez, F., Quintana, J.A., Villalvilla, J.M., Díaz-García, M.A., Martín-Gomis, L., Fernández-Lázaro, F., et al.: Phthalocyanines as efficient sensitizers in low-Tg hole-conducting photorefractive polymer composites. Chem. Mater. 21(13), 2714–2720 (2009)CrossRefGoogle Scholar
- 171.Köber, S., Prauzner, J., Salvador, M., Kooistra, F.B., Hummelen, J.C., Meerholz, K.: 1064-nm sensitive organic photorefractive composites. Adv. Mater. 22(12), 1383–1386 (2010)CrossRefGoogle Scholar
- 172.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)CrossRefGoogle Scholar
- 173.Wang, Y., Herron, N.: Photoconductivity of CdS nanocluster-doped polymers. Chem. Phys. Lett. 200(1–2), 71–75 (1992)CrossRefGoogle Scholar
- 174.Milliron, D.J., Alivisatos, A.P., Pitois, C., Edder, C., Fréchet, J.M.J.: Electroactive surfactant designed to mediate electron transfer between CdSe Nanocrystals and organic semiconductors. Adv. Mater. 15(1), 58–61 (2003)CrossRefGoogle Scholar
- 175.Winiarz, J.G., Zhang, L.M., Lal, M., Friend, C.S., Prasad, P.N.: Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem. Phys. 245(1–3), 417–428 (1999)CrossRefGoogle Scholar
- 176.Binks, D.J., West, D.P., Norager, S., O’Brien, P.: Field-independent grating formation rate in a photorefractive polymer composite sensitized by CdSe quantum dots. J. Chem. Phys. 117(15), 7335–7341 (2002)CrossRefGoogle Scholar
- 177.Fears, T.M., Anderson, C., Winiarz, J.G.: Photorefractivity in a polymeric composite photosensitized with NiS nanocrystals. J. Chem. Phys. 129, 15 (2008)CrossRefGoogle Scholar
- 178.Winiarz, J.G., Zhang, L., Park, J., Prasad, P.N.: Inorganic: organic hybrid nanocomposites for photorefractivity at communication wavelengths. J. Phys. Chem. B 106(5), 967–970 (2002)CrossRefGoogle Scholar
- 179.Aslam, F., Stevenson-Hill, J., Binks, D.J., Daniels, S., Pickett, N.L., O’Brien, P.: Effect of nanoparticle composition on the performance of photorefractive polymers. Chem. Phys. 334(1–3), 45–52 (2007)CrossRefGoogle Scholar
- 180.Moon, J.-S., Liang, Y., Stevens, T.E., Monson, T.C., Huber, D.L., Mahala, B.D., et al.: Off-resonance photosensitization of a photorefractive polymer composite using PbS nanocrystals. J. Phys. Chem. C 119(24), 13827–13835 (2015)CrossRefGoogle Scholar
- 181.Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., et al.: Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480(7378), 504–508 (2011)CrossRefGoogle Scholar
- 182.Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., et al.: Inkjet printing of single-crystal films. Nature 475(7356), 364–367 (2011)CrossRefGoogle Scholar
- 183.Diao, Y., Tee, B.C.K., Giri, G., Xu, J., Kim, D.H., Becerril, H.A., et al.: Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12(7), 665–671 (2013)CrossRefGoogle Scholar
- 184.Lin, Y., Li, Y., Zhan, X.: Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 41(11), 4245–4272 (2012)CrossRefGoogle Scholar
- 185.Shirota, Y., Kageyama, H.: Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107(4), 953–1010 (2007)CrossRefGoogle Scholar
- 186.Chiu, S.-W., Lin, L.-Y., Lin, H.-W., Chen, Y.-H., Huang, Z.-Y., Lin, Y.-T., et al.: A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. Chem. Commun. 48(13), 1857–1859 (2012)CrossRefGoogle Scholar
- 187.Wang, L., Ng, M.-K., Yu, L.: Efficient molecular photorefractive materials based on methine dyes. Appl. Phys. Lett. 78(6), 700–702 (2001)CrossRefGoogle Scholar
- 188.Ostroverkhova, O., Wright, D., Gubler, U., Moerner, W.E., He, M., Sastre-Santos, A., et al.: Recent advances in understanding and development of photorefractive polymers and glasses. Adv. Funct. Mater. 12(9), 621–629 (2002)CrossRefGoogle Scholar
- 189.Ostroverkhova, O., He, M., Twieg, R.J., Moerner, W.E.: Role of temperature in controlling performance of photorefractive organic glasses. ChemPhysChem 4(7), 732–744 (2003)CrossRefGoogle Scholar
- 190.Choi, C.-S., Moon, I.K., Kim, N.: High-performance photorefractive organic glass based on diphenylhydrazone. Appl. Phys. Lett. 94(5), 053302 (2009)CrossRefGoogle Scholar
- 191.Zhang, L., Xu, S., Yang, Z., Cao, S.: Photorefractive effect in triphenylamine-based monolithic molecular glasses with low Tg. Mater. Chem. Phys. 126(3), 804–810 (2011)CrossRefGoogle Scholar
- 192.Veres, J., Ogier, S.D., Leeming, S.W., Cupertino, D.C., Mohialdin Khaffaf, S.: Low-k Insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13(3), 199–204 (2003)CrossRefGoogle Scholar
- 193.McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., et al.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333 (2006)CrossRefGoogle Scholar
- 194.Hamadani, B.H., Gundlach, D.J., McCulloch, I., Heeney, M.: Undoped polythiophene field-effect transistors with mobility of 1cm2V-1s-1. Appl. Phys. Lett. 91(24), 243512 (2007)CrossRefGoogle Scholar
- 195.Havinga, E.E., ten Hoeve, W., Wynberg, H.: A new class of small band gap organic polymer conductors. Polym. Bull. 29(1–2), 119–126 (1992)CrossRefGoogle Scholar
- 196.Havinga, E.E., ten Hoeve, W., Wynberg, H.: Alternate donor-acceptor small-band-gap semiconducting polymers; polysquaraines and polycroconaines. Synth. Met. 55(1), 299–306 (1993)CrossRefGoogle Scholar
- 197.Pandey, L., Risko, C., Norton, J.E., Brédas, J.-L.: Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45(16), 6405–6414 (2012)CrossRefGoogle Scholar
- 198.Mühlbacher, D., Scharber, M., Morana, M., Zhu, Z., Waller, D., Gaudiana, R., et al.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18(21), 2884–2889 (2006)CrossRefGoogle Scholar
- 199.Zhang, M., Tsao, H.N., Pisula, W., Yang, C., Mishra, A.K., Müllen, K.: Field-effect transistors based on a benzothiadiazole–cyclopentadithiophene copolymer. J. Am. Chem. Soc. 129(12), 3472–3473 (2007)CrossRefGoogle Scholar
- 200.Wang, S., Kappl, M., Liebewirth, I., Müller, M., Kirchhoff, K., Pisula, W., et al.: Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24(3), 417–420 (2012)CrossRefGoogle Scholar
- 201.Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., et al.: A high-mobility electron-transporting polymer for printed transistors. Nature 457(7230), 679–686 (2009)CrossRefGoogle Scholar
- 202.Lei, T., Dou, J.-H., Pei, J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24(48), 6457–6461 (2012)CrossRefGoogle Scholar
- 203.Zhang, W., Smith, J., Watkins, S.E., Gysel, R., McGehee, M., Salleo, A., et al.: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132(33), 11437–11439 (2010)CrossRefGoogle Scholar