Advertisement

Topology of Quantum Mechanical Current Density Vector Fields Induced in a Molecule by Static Magnetic Perturbations

  • P. LazzerettiEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 22)

Abstract

It is shown that the quantum mechanical theory of static magnetic properties can be reformulated in terms of electronic current densities induced by an external magnetic field and permanent magnetic dipole moments at the nuclei. Theoretical relationships are reported to evaluate magnetizability, nuclear magnetic shielding and nuclear spin-spin coupling via the equations of classical electromagnetism, assuming that the current density is evaluated by quantum mechanical methods. Emphasis is placed on the advantage of the proposed formulation, as an alternative to procedures based on perturbation theory, as regards interpretation of response allowing for the ideas of current density tensor and current susceptibility vector. Visualisation of the electronic interaction with a magnetic field and intramolecular perturbations, e.g., nuclear magnetic dipoles, is made possible via current density maps, nuclear shielding density maps and plots of nuclear spin-spin coupling density. Topological analysis of the quantum mechanical current density in terms of Gomes stagnation graphs is shown to yield fundamental information for understanding magnetic response. Examples are given for a few archetypal molecules. A topological definition of delocalized electron currents is proposed.

Keywords

Electronic current densities induced by magnetic fields and nuclear magnetic dipoles Molecular magnetic response Property densities Gauge invariance Charge conservation Current density vectors and current density tensors Current susceptibility vectors Topology of current density vector fields Bifurcations Topological definition of ring current 

References

  1. 1.
    Hirschfelder JO (1978) J Chem Phys 68:5151CrossRefGoogle Scholar
  2. 2.
    Lazzeretti P (1989) Adv Chem Phys 75:507Google Scholar
  3. 3.
    Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Wilson S (ed) Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3. Wiley, Chichester, pp 53–145Google Scholar
  4. 4.
    Lazzeretti P (2013) Electronic current densities induced by magnetic fields and nuclear magnetic dipoles. Theory and computation of NMR spectral parameters, volume 3 of High resolution NMR spectroscopy, science and technology of atomic, molecular, condensed matter and biological systems. Elsevier, New YorkGoogle Scholar
  5. 5.
    Lazzeretti P (2014) Int J Quantum Chem 114:1364CrossRefGoogle Scholar
  6. 6.
    Landau LD, Lifshitz EM (1981) Quantum mechanics. Pergamon Press, OxfordGoogle Scholar
  7. 7.
    Hirschfelder JO, Brown WB, Epstein S (1964) Adv Quantum Chem 1:255CrossRefGoogle Scholar
  8. 8.
    Van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Ramsey NF (1950) Phys Rev 78:699CrossRefGoogle Scholar
  10. 10.
    Ramsey NF (1951) Phys Rev 83:540CrossRefGoogle Scholar
  11. 11.
    Ramsey NF (1952) Phys Rev 86:243CrossRefGoogle Scholar
  12. 12.
    Ramsey NF, Purcell EM (1952) Phys Rev 85:143CrossRefGoogle Scholar
  13. 13.
    Ramsey NF (1953) Phys Rev 91:303CrossRefGoogle Scholar
  14. 14.
    Emsley JW, Feeney J, Sutcliffe LH (1967) High resolution nuclear magnetic resonance spectroscopy. Pergamon Press, Oxford, pp 10–13Google Scholar
  15. 15.
    Lazzeretti P (2000) Ring currents. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 36. Elsevier, pp 1–88Google Scholar
  16. 16.
    Soncini A, Lazzeretti P (2005) Chem Phys Lett 409:177CrossRefGoogle Scholar
  17. 17.
    Zubarev DN (1974) Nonequilibrium statistical thermodynamics. Consultants Bureau, New YorkGoogle Scholar
  18. 18.
    Jørgensen P, Simons J (1981) Second quantization-based method in quantum chemistry. Academic Press, New YorkGoogle Scholar
  19. 19.
    Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, ChichesterCrossRefGoogle Scholar
  20. 20.
    Sauer SPA (2011) Molecular electromagnetism: a computational chemistry approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  21. 21.
    Taylor PR (1994) Lecture notes in quantum chemistry, European summer school in quantum chemistry. In: Roos BO (ed). Springer, BerlinGoogle Scholar
  22. 22.
    Bartlett RJ (1995) Modern electronic structure theory. In: Yarkony DR (ed). World Scientific, SingaporeGoogle Scholar
  23. 23.
    Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291CrossRefGoogle Scholar
  24. 24.
    Jusélius J, Sundholm D, Gauss J (2004) J Chem Phys 121:3952CrossRefGoogle Scholar
  25. 25.
    Lin Y-C, Jusélius J, Sundholm D, Gauss J (2005) J Chem Phys 122:214308CrossRefGoogle Scholar
  26. 26.
    Fliegl H, Sundholm D, Taubert S, Jusélius J, Klopper W (2009) J Phys Chem A 113:8668CrossRefGoogle Scholar
  27. 27.
    Fliegl H, Taubert S, Lehtonen O, Sundholm D (2011) Phys Chem Chem Phys 13:20500CrossRefGoogle Scholar
  28. 28.
    Schrödinger E (1926) Ann Phys (Leipzig) 81:109CrossRefGoogle Scholar
  29. 29.
    Madelung E (1926) Z Phys 40:322CrossRefGoogle Scholar
  30. 30.
    de Broglie L (1926) C R Acad Sci (Paris) 183:447Google Scholar
  31. 31.
    de Broglie L (1927) C R Acad Sci (Paris) 184:273Google Scholar
  32. 32.
    Landau L (1941) J Phys USSR 5:71Google Scholar
  33. 33.
    London F (1945) Rev Mod Phys 17:310CrossRefGoogle Scholar
  34. 34.
    Bohm D (1952) Phys Rev 85:166CrossRefGoogle Scholar
  35. 35.
    Bohm D (1952) Phys Rev 85:180CrossRefGoogle Scholar
  36. 36.
    Bialynicki-Birula I, Bialynicka-Birula Z (1971) Phys Rev D 3:2410CrossRefGoogle Scholar
  37. 37.
    Hirschfelder JO, Christoph AC (1974) J Chem Phys 61:5435CrossRefGoogle Scholar
  38. 38.
    Hirschfelder JO, Goebel CJ, Bruch LW (1974) J Chem Phys 61:5456CrossRefGoogle Scholar
  39. 39.
    Hirschfelder JO, Tang KT (1976) J Chem Phys 64:760CrossRefGoogle Scholar
  40. 40.
    Hirschfelder JO, Tang KT (1976) J Chem Phys 65:470CrossRefGoogle Scholar
  41. 41.
    Takabayasi T (1957) Progress Theor Phys Suppl 4:1CrossRefGoogle Scholar
  42. 42.
    Holland PR (1993) The quantum theory of motion. Cambridge University Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Bohm D, Hiley BJ, Kaloyerou PN (1987) Phys Rep 144:321CrossRefGoogle Scholar
  44. 44.
    Cushing JT, Fine A, Goldstein S (eds) (1996) Bohmian mechanics: an appraisal. Kluwer, BostonGoogle Scholar
  45. 45.
    Faglioni F, Ligabue L, Pelloni S, Soncini A, Viglione RG, Ferraro MB, Zanasi R, Lazzeretti P (2005) Org Lett 7:3457Google Scholar
  46. 46.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New York, pp 175–178Google Scholar
  47. 47.
    Ferraro MB, Lazzeretti P, Viglione RG, Zanasi R (2004) Chem Phys Lett 390:268CrossRefGoogle Scholar
  48. 48.
    Pelloni S, Ligabue A, Lazzeretti P (2004) Org Lett 6:4451CrossRefGoogle Scholar
  49. 49.
    Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005) Chem Phys Lett 401:164CrossRefGoogle Scholar
  50. 50.
    Ferraro MB, Faglioni F, Ligabue A, Pelloni S, Lazzeretti P (2005) Magn Res Chem 43:316CrossRefGoogle Scholar
  51. 51.
    Soncini A, Lazzeretti P (2003) J Chem Phys 118:7165CrossRefGoogle Scholar
  52. 52.
    Soncini A, Lazzeretti P (2003) J Chem Phys 119:1343CrossRefGoogle Scholar
  53. 53.
    Jameson CJ, Buckingham AD (1979) J Phys Chem 83:3366CrossRefGoogle Scholar
  54. 54.
    Jameson CJ, Buckingham AD (1980) J Chem Phys 73:5684CrossRefGoogle Scholar
  55. 55.
    Gomes JANF (1983) J Chem Phys 78:4585CrossRefGoogle Scholar
  56. 56.
    Gomes JANF (1983) Phys Rev A 28:559CrossRefGoogle Scholar
  57. 57.
    Gomes JANF (1983) J Mol Struct (THEOCHEM) 93:111Google Scholar
  58. 58.
    Hamermesh M (1972) Group theory and its applications to physical problems. Addison-Wesley, LondonGoogle Scholar
  59. 59.
    McWeeny R (1989) Methods of molecular quantum mechanics. Academic Press, LondonGoogle Scholar
  60. 60.
    Pelloni S, Lazzeretti P (2012) J Chem Phys 136:164110CrossRefGoogle Scholar
  61. 61.
    Lazzeretti P, Malagoli M, Zanasi R (1994) J Mol Struct (Theochem) 313:299CrossRefGoogle Scholar
  62. 62.
    Soncini A, Lazzeretti P (2006) ChemPhysChem 7:679CrossRefGoogle Scholar
  63. 63.
    Lazzeretti P (2012) J Chem Phys 137:074108CrossRefGoogle Scholar
  64. 64.
    Raynes WT (1992) Magn Reson Chem 30:686CrossRefGoogle Scholar
  65. 65.
    Epstein ST (1974) The variation method in quantum chemistry. Academic Press, New YorkGoogle Scholar
  66. 66.
    Arrighini GP, Maestro M, Moccia R (1970) J Chem Phys 52:6411CrossRefGoogle Scholar
  67. 67.
    Arrighini G, Maestro M, Moccia R (1970) Chem Phys Lett 7:351CrossRefGoogle Scholar
  68. 68.
    Lazzeretti P, Zanasi R (1980) J Chem Phys 72:6768CrossRefGoogle Scholar
  69. 69.
    Lazzeretti P, Zanasi R (1977) Int J Quantum Chem 12:93CrossRefGoogle Scholar
  70. 70.
    Lazzeretti P, Malagoli M, Zanasi R (1991) Chem Phys 150:173CrossRefGoogle Scholar
  71. 71.
    Lazzeretti P, Malagoli M, Zanasi R (1994) Chem Phys Lett 220:299CrossRefGoogle Scholar
  72. 72.
    Epstein ST (1973) J Chem Phys 58:1592CrossRefGoogle Scholar
  73. 73.
    Landau LD, Lifshitz EM (1979) The classical theory of fields, 4th edn. Pergamon Press, OxfordGoogle Scholar
  74. 74.
    Arrighini GP, Maestro M, Moccia R (1968) J Chem Phys 49:882CrossRefGoogle Scholar
  75. 75.
    Lazzeretti P (2012) Theor Chem Acc 131:1 (and references therein)CrossRefGoogle Scholar
  76. 76.
    Monaco G, Zanasi R, Pelloni S, Lazzeretti P (2010) J Chem Theor Comput 6:3343CrossRefGoogle Scholar
  77. 77.
    Pelloni S, Lazzeretti P (2011) J Phys Chem A 115:4553CrossRefGoogle Scholar
  78. 78.
    Hirschfelder JO (1977) J Chem Phys 67:5477CrossRefGoogle Scholar
  79. 79.
    Takabayasi T (1952) Progress Theoret Phys 8:143CrossRefGoogle Scholar
  80. 80.
    Takabayasi T (1953) Progress Theoret Phys 9:187CrossRefGoogle Scholar
  81. 81.
    Riess J, Primas H (1968) Chem Phys Lett 1:545CrossRefGoogle Scholar
  82. 82.
    Riess J (1970) Ann Phys 57:301CrossRefGoogle Scholar
  83. 83.
    Riess J (1971) Ann Phys 67:346CrossRefGoogle Scholar
  84. 84.
    Riess J (1970) Phys Rev D 2:647CrossRefGoogle Scholar
  85. 85.
    Milnor JW (1997) Topology from the differentiable viewpoint. University of Virginia Press, CharlottesvilleGoogle Scholar
  86. 86.
    Guillemin V, Pollack A (1974) Differential topology. Prentice-Hall, Englewood CliffsGoogle Scholar
  87. 87.
    Collard K, Hall GG (1977) Int J Quantum Chem XII:623Google Scholar
  88. 88.
    Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, OxfordGoogle Scholar
  89. 89.
    Keith TA, Bader RFW (1993) J Chem Phys 99:3669CrossRefGoogle Scholar
  90. 90.
    Bader RFW, Keith TA (1993) J Chem Phys 99:3683CrossRefGoogle Scholar
  91. 91.
    Coddington EA, Levinson N (1955) Theory of ordinary differential equations. Mc Graw-Hill, New YorkGoogle Scholar
  92. 92.
    Reyn JW, Angew Z (1964) Math Physik 15:540Google Scholar
  93. 93.
    Gomes JANF (1983) J Chem Phys 78:3133CrossRefGoogle Scholar
  94. 94.
    Bergé P, Pomeau Y, Vidal C (1998) L’ordre dans le Chaos - vers une approche déterministe de la turbulence, cinquième edition. Hermann, New YorkGoogle Scholar
  95. 95.
    Abraham RH, Shaw CD (1992) Dynamics–the geometry of behavior, 2nd edn. Addison-Wesley, Redwood CityGoogle Scholar
  96. 96.
    Gilmore R (1993) Catastrophe theory for scientist and engineers. Dover Publications Inc., New YorkGoogle Scholar
  97. 97.
    Sachs RG (1987) The physics of time reversal. The University of Chicago Press, Chicago, p 12, 21, 24Google Scholar
  98. 98.
    Tavger BA, Zaitsev VM (1956) Sov Phys JETP 3:430Google Scholar
  99. 99.
    Bradley CJ, Davies BL (1968) Rev Mod Phys 40:359CrossRefGoogle Scholar
  100. 100.
    (1955) J Chem Phys 23:1997Google Scholar
  101. 101.
    Mulliken RS (1956) J Chem Phys 24:1118CrossRefGoogle Scholar
  102. 102.
    Pelloni S, Lazzeretti P (2011) Int J Quantum Chem 111:356CrossRefGoogle Scholar
  103. 103.
    Pelloni S, Lazzeretti P (2009) Chem Phys 356:153CrossRefGoogle Scholar
  104. 104.
    Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006) Phys Rev A 74:012506CrossRefGoogle Scholar
  105. 105.
    Coriani S, Lazzeretti P, Malagoli M, Zanasi R (1994) Theor Chim Acta 89:181CrossRefGoogle Scholar
  106. 106.
    Keith TA, Bader RFW (1993) Chem Phys Lett 210:223CrossRefGoogle Scholar
  107. 107.
    Zanasi R (1996) J Chem Phys 105:1460CrossRefGoogle Scholar
  108. 108.
    Parker TS, Chua LO (1986) Practical numerical algorithms for chaotic systems. Springer, New YorkGoogle Scholar
  109. 109.
    Lazzeretti P, Zanasi R (1982) J Chem Phys 77:3129CrossRefGoogle Scholar
  110. 110.
    Viglione RG, Zanasi R, Lazzeretti P (2004) Org Lett 6:2265CrossRefGoogle Scholar
  111. 111.
    Pelloni S, Lazzeretti P (2007) Theor Chem Acc 117:903CrossRefGoogle Scholar
  112. 112.
    Pelloni S, Lazzeretti P (2007) Theor Chem Acc 118:89CrossRefGoogle Scholar
  113. 113.
    Pelloni S, Lazzeretti P, Zanasi R (2007) J Phys Chem A 111:8163CrossRefGoogle Scholar
  114. 114.
    Carion R, Champagne B, Monaco G, Zanasi R, Pelloni S, Lazzeretti P (2010) J Chem Theor Comput 6:2002Google Scholar
  115. 115.
    Pelloni S, Lazzeretti P (2008) J Phys Chem A 112:5175CrossRefGoogle Scholar
  116. 116.
    Pelloni S, Lazzeretti P (2008) J Chem Phys 128:194305CrossRefGoogle Scholar
  117. 117.
    Pelloni S, Carion R, Liégeois V, Lazzeretti P (2011) J Comput Chem 32:1599CrossRefGoogle Scholar
  118. 118.
    Faglioni F, Ligabue A, Pelloni S, Soncini A, Lazzeretti P (2004) Chem Phys 304:289CrossRefGoogle Scholar
  119. 119.
    Khriplovich IB (1991) Parity nonconservation in atomic phenomena. Gordon and Breach, OxfordGoogle Scholar
  120. 120.
    Pelloni S, Faglioni F, Soncini A, Ligabue A, Lazzeretti P (2003) Chem Phys Lett 375:583CrossRefGoogle Scholar
  121. 121.
    Pelloni S, Lazzeretti P, Zanasi R (2009) Theor Chem Acc 123:353CrossRefGoogle Scholar
  122. 122.
    Pelloni S, Lazzeretti P, Monaco G, Zanasi R (2011) Rend Lincei 22:105CrossRefGoogle Scholar
  123. 123.
    Provasi PF, Pagola GI, Ferraro MB, Pelloni S, Lazzeretti P (2014) J Phys Chem A 118:6333CrossRefGoogle Scholar
  124. 124.
    Pagola GI, Ferraro MB, Provasi PF, Pelloni S, Lazzeretti P (2014) J Chem Phys 141Google Scholar
  125. 125.
    Feixas F, Matito E, Poater J, Solà M (2015) Chapter “Rules of aromaticity”, this bookGoogle Scholar
  126. 126.
  127. 127.
    Omelchenko IV et al (2011) Phys Chem Chem Phys 13:20536CrossRefGoogle Scholar
  128. 128.
    Steinmann SN, Mo Y, Corminboeuf C (2011) Phys Chem Chem Phys 13:20584CrossRefGoogle Scholar
  129. 129.
    Feixas F, Vandenbussche J, Bultinck P, Matito E, Solà M (2011) Phys Chem Chem Phys 13:20690CrossRefGoogle Scholar
  130. 130.
    Feixas F, Matito E, Poater J, Solà M (2015) Chem Soc Rev 44:6434Google Scholar
  131. 131.
    Musher JI (1965) J Chem Phys 43:4081CrossRefGoogle Scholar
  132. 132.
    Musher JI (1967) J Chem Phys 46:1219CrossRefGoogle Scholar
  133. 133.
    Gaidis JM, West R (1967) J Chem Phys 46:1218CrossRefGoogle Scholar
  134. 134.
    Garrat PJ (1986) Aromaticity. Wiley, New YorkGoogle Scholar
  135. 135.
    Sondheimer F (1972) Acc Chem Res 5:81CrossRefGoogle Scholar
  136. 136.
    Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic resonance. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 13. Pergamon Press, Oxford, pp 303–344Google Scholar
  137. 137.
    von Ragué Schleyer P (2001) Chem Rev 101:1115 (and articles therein)Google Scholar
  138. 138.
    Gomes JANF, Mallion RB (2001) Chem Rev 101:1349CrossRefGoogle Scholar
  139. 139.
    Pelloni S, Lazzeretti P, Zanasi R (2009) J Phys Chem A 113:14465CrossRefGoogle Scholar
  140. 140.
    Musher JI (1966) Theory of the chemical shift. In: Waugh JS (ed) Advances in magnetic resonance, vol 2. Academic Press, New York, pp 177–224Google Scholar
  141. 141.
    Pelloni S, Monaco G, Lazzeretti P, Zanasi R (2011) Phys Chem Chem Phys 13:20666CrossRefGoogle Scholar
  142. 142.
    Pelloni S, Monaco G, Zanasi R, Lazzeretti P (2012) AIP Conf Proc 1456:114CrossRefGoogle Scholar
  143. 143.
    Pelloni S, Lazzeretti P (2013) J Phys Chem A 117:9083CrossRefGoogle Scholar
  144. 144.
    London F (1937) J Phys Radium 8:397 (7ème Série)Google Scholar
  145. 145.
    Pelloni S, Monaco G, Della Porta P, Zanasi R, Lazzeretti P (2014) J Phys Chem A 118:3367Google Scholar
  146. 146.
    Van Vleck JH, Sherman A (1935) Rev Mod Phys 7:167Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze chimiche e geologicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations