Emergent Scalar and Vector Fields in Quantum Chemical Topology

  • A. Martín PendásEmail author
  • E. Francisco
  • A. Gallo Bueno
  • J. M. Guevara Vela
  • A. Costales
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 22)


Several potentially useful scalar and vector fields that have been scarcely or even never used to date in Quantum Chemical Topology are defined, computed, and analyzed for a few small molecules. The fields include the Ehrenfest force derived from the second order density matrix, which does not show many of the spurious features encountered when it is computed from the electronic stress tensor, the exchange-correlation (xc) potential, the potential acting on one electron in a molecule, and the additive and effective energy densities. The basic features of the topology of some of these fields are also explored and discussed, paying attention to their possible future interest.


Molecular Electrostatic Potential Electron Localization Function Kinetic Energy Density Pair Density Order Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support from the Spanish MICINN, Project CTQ2012-31174. AGB also acknowledges FICYT for a Ph.D. grant (BP 11-127).


  1. 1.
    Bader RFW (1990) Atoms in molecules. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Bader RFW, Gatti C (1998) Chem Phys Lett 287:233–238CrossRefGoogle Scholar
  3. 3.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  4. 4.
    Berlin T (1951) J Chem Phys 19:208–213CrossRefGoogle Scholar
  5. 5.
    Blanco MA, Martín Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096–1109Google Scholar
  6. 6.
    Cancès E, Keriven R, Lodier F, Savin A (2004) Theoret Chem Acc 111:373–380CrossRefGoogle Scholar
  7. 7.
    Dong-Xia Z, Li-Dong G, Zhong-Zhi Y (2005) J Phys Chem 109:10121–10128CrossRefGoogle Scholar
  8. 8.
    Dong-Xia Z, Zhong-Zhi Y (2014) J Comput Chem 35:965–977CrossRefGoogle Scholar
  9. 9.
    Finzel K (2014) Int J Quantum Chem 114(9):568–576CrossRefGoogle Scholar
  10. 10.
    Francisco E, Martín Pendás A, Blanco MA J Chem Phys 126Google Scholar
  11. 11.
    Francisco E, Martín Pendás A, Blanco MA (2008) Comput Phys Commun 178:621–634Google Scholar
  12. 12.
    Francisco E, Martín Pendás A, García-Revilla M (2013) Comput Theoret Chem 1003:71–78Google Scholar
  13. 13.
    Francisco E, Pendás M (2014) Comput Phys Commun 185:2663–2682CrossRefGoogle Scholar
  14. 14.
    García-Revilla M, Francisco E, Popelier PLA, Martín Pendás A (2013) Chem Phys Chem 14:1211–1218Google Scholar
  15. 15.
    García-Revilla M, Popelier PLA, Francisco E, Martín Pendás A (2011) J Chem Theory Comput 7:1704–1711Google Scholar
  16. 16.
    Gatti C, Macchi P (eds) (2012) Modern charge-density analysis. Springer, DordrechtGoogle Scholar
  17. 17.
    Guevara-Vela JM, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, Martín Pendás A (2013) Chem Eur J 19, 14:304–14,315Google Scholar
  18. 18.
    Hernandez-Trujillo J, Cortés-Guzman F, Fang DC, Bader RFW (2007) Faraday Discuss 135:79–95CrossRefGoogle Scholar
  19. 19.
    Kohout M (2004) A measure of electron localizability. Int J Quantum Chem 97:651–658CrossRefGoogle Scholar
  20. 20.
    Kohout M (2007) Bonding indicators from electron pair density functionals. Faraday Discuss 135:43–54CrossRefGoogle Scholar
  21. 21.
    Kohout M, Pernal K, Wagner FR, Grin Y (2004) Electron localizability indicator for correlated wavefunctions. i. parallel-spin pairs. Theoret Chem Acc 112:453–459CrossRefGoogle Scholar
  22. 22.
    Kohout M, Pernal K, Wagner FR, Grin Y (2005) Electron localizability indicator for correlated wavefunctions. ii antiparallel-spin pairs. Theoret Chem Acc 113:287–293CrossRefGoogle Scholar
  23. 23.
    Kohout M, Wagner FR, Grin Y (2008) Electron localizability indicator for correlated wavefunctions. iii: singlet and triplet pairs. Theoret Chem Acc 119:413–420CrossRefGoogle Scholar
  24. 24.
    Martín Pendás A, Francisco E Promolden. a qtaim/iqa code (unpublished). A QTAIM/IQA code (Unpublished)Google Scholar
  25. 25.
    Martín Pendás A, Francisco E, Blanco MA J Chem Phys 127Google Scholar
  26. 26.
    Martín Pendás A, Francisco E, Blanco MA, Gatti C (2007) Chem Eur J 13:9362–9371Google Scholar
  27. 27.
    Martín Pendás A, Hernández-Trujillo J (2012) J Chem Phys 137, 134:101–1–134,101–9Google Scholar
  28. 28.
    Matta CF (ed) (2010) Quantum biochemistry. Wiley-VCH Verlag GmbH & Co. KGaAGoogle Scholar
  29. 29.
    Matta CF, Boyd RJ (eds): The Quantum Theory of Atoms in Molecules. Wiley-VCH Verlag GmbH & Co. KGaA (2007)Google Scholar
  30. 30.
    Maza JR, Jenkins S, Steven RK, Anderson JSM, Ayers PW (2013) Phys Chem Chem Phys 15:17823–17836CrossRefGoogle Scholar
  31. 31.
    Menéndez M, Álvarez Boto R, Francisco E, Martín Pendás A (2015) J Comput Chem xxx, xxxx–xxxxGoogle Scholar
  32. 32.
    Murray KS, Sen K (eds) (1996) Molecular electrostatic potentials: concepts and applications, ElsevierGoogle Scholar
  33. 33.
    Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Angew Chem Int Ed Engl 31:187–188CrossRefGoogle Scholar
  34. 34.
    Schmider HL, Becke AD (2002) J Chem Phys 116(8):3184–3193CrossRefGoogle Scholar
  35. 35.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Martín Pendás
    • 1
    Email author
  • E. Francisco
    • 1
  • A. Gallo Bueno
    • 1
  • J. M. Guevara Vela
    • 1
  • A. Costales
    • 1
  1. 1.University of OviedoOviedoSpain

Personalised recommendations