Diversity of the Nature of the Nitrogen-Oxygen Bond in Inorganic and Organic Nitrites in the Light of Topological Analysis of Electron Localisation Function (ELF)

  • Slawomir BerskiEmail author
  • Agnieszka J Gordon
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 22)


The electronic structure of nitrite group (–ONO) has been studied for 21 inorganic and organic nitrites using topological analysis of Electron Localisation Function (ELF) for the DFT(B2PLYP)/aug-cc-pVTZ and DFT(B3LYP)/aug-cc-pVTZ optimised geometrical structures. The N–O bonds exhibit populations smaller than 2e, thus including the N+O, NO+ Lewis-type structures in the description of electron density delocalisation is of great importance. The main focus of the ELF analysis was formally single N–O bond in the nitrite group (–O–NO). The results have yielded four different types of local topology: (a) single local maximum V(N,O) with the disynaptic bonding basin, (b) two local maxima V(N), V(O) with monosynaptic non-bonding basins, (c) single local maximum V(N) with monosynaptic non-bonding basin, (d) absence of the local maxima in the N–O bond. Analysis of relationships between basin population values, calculated for the V(N,O), V(N) and V(O) basins, and the N–O bond length, has shown overall trends that can be qualitatively described by the catastrophe theory.


Topological Analysis Electron Localization Function Basin Population Peroxynitrous Acid Anti Conformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the Wroclaw Centre for Networking and Supercomputing for generous allocation of computer time.


  1. 1.
    Burgaud JL, Ongini E, Del Soldato P (2002) Ann N Y Acad Sci 962:360–371CrossRefGoogle Scholar
  2. 2.
    Nicolescu AC, Reynolds JN, Barclay LRC, Thatcher GRJ (2004) Chem Res Toxicol 17:185–196CrossRefGoogle Scholar
  3. 3.
    Artz JD, Thatcher GR (1998) Chem Res Toxicol 11:1393–1397CrossRefGoogle Scholar
  4. 4.
    Brunton TL (1867) Lancet 2:97CrossRefGoogle Scholar
  5. 5.
    Bradberry SM, Whittington RM, Parry DA, Vale JA (1994) J Toxicol Clin Toxicol 32:179–184CrossRefGoogle Scholar
  6. 6.
    Song H, Saraswathy V, Muralidharan C-HL, Thangavelu K (2009) J Appl Electrochem 39(1):15–22CrossRefGoogle Scholar
  7. 7.
    Hord NG, Tang Y, Brayn NS (2009) Am J Clin Nutr 90(1):1–10CrossRefGoogle Scholar
  8. 8.
    Popelier PLA (2005) Structure and Bonding. Intermolecular forces and clusters I 115:1–56CrossRefGoogle Scholar
  9. 9.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford Univeristy Press, OxfordGoogle Scholar
  10. 10.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  11. 11.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  12. 12.
    Chevreau H, Fuster F, Silvi B (2001) L’Actualité Chimique 240:15–22Google Scholar
  13. 13.
    Silvi B, Fourré I, Alikhani ME (2005) Monatsh Chem 136:855–879CrossRefGoogle Scholar
  14. 14.
    Silvi B (2002) J Mol Struct 614:3–10CrossRefGoogle Scholar
  15. 15.
    Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096CrossRefGoogle Scholar
  16. 16.
    Kohout M (2004) Int J Quantum Chem 97:651–658CrossRefGoogle Scholar
  17. 17.
    Kohout M (2007) Faraday Discuss 135:43–54CrossRefGoogle Scholar
  18. 18.
    Berski S, Mierzwicki K, Bil A, Latajka Z (2008) Chem Phys Lett 460:559–562CrossRefGoogle Scholar
  19. 19.
    Berski S, Latajka Z (2010) Int J Quantum Chem 110:1890–1900Google Scholar
  20. 20.
    Berski S, Latajka Z, Gordon AJ (2010) J Chem Phys 133:034304–034313CrossRefGoogle Scholar
  21. 21.
    Berski S, Latajka Z, Gordon AJ (2010) Chem Phys Lett 493:392–398CrossRefGoogle Scholar
  22. 22.
    Berski S, Latajka Z, Gordon AJ (2010) J Comput Chem 31:2555–2567CrossRefGoogle Scholar
  23. 23.
    Berski S, Gordon AJ (2011) J Chem Phys 135:094303–094316CrossRefGoogle Scholar
  24. 24.
    Berski S, Latajka Z, Gordon AJ (2011) Chem Phys Lett 506:15–21CrossRefGoogle Scholar
  25. 25.
    Berski S, Latajka Z, Gordon AJ (2011) J Comput Chem 32:1528–1540CrossRefGoogle Scholar
  26. 26.
    Berski S, Latajka Z (2011) Int J Quantum Chem 111:2378–2389CrossRefGoogle Scholar
  27. 27.
    Berski S, Gordon AJ (2012) Chem Phys Lett 525–526:24–31CrossRefGoogle Scholar
  28. 28.
    Berski S, Gordon AJ, Latajka Z (2013) J Chem Phys 138:134313–134322Google Scholar
  29. 29.
    Krokidis X, Noury S, Silvi B (1997) J Phys Chem A 101:7277–7282CrossRefGoogle Scholar
  30. 30.
    Krokidis X, Silvi B, Alikhani ME (1998) Chem Phys Lett 292:35–45Google Scholar
  31. 31.
    Krokidis X, Silvi B, Dezarnaud-Dandine C, Sevin A (1998) New J Chem 22:1341–1350Google Scholar
  32. 32.
    Krokidis X, Vuilleumier R, Borgis D, Silvi B (1999) Mol Phys 96:265–273Google Scholar
  33. 33.
    Thom R (1972) Stabilité Structurelle et Morphogénèse. Intereditions, ParisGoogle Scholar
  34. 34.
    Fukui K (1981) Acc Chem Res 14:363–368Google Scholar
  35. 35.
    Llusar R, Beltrán A, Andrés J, Noury S, Silvi B (1999) J Comput Chem 20:1517–1526CrossRefGoogle Scholar
  36. 36.
    Shaik S, Maitre P, Sini G, Hiberty PC (1992) J Am Chem Soc 114:7861–7866CrossRefGoogle Scholar
  37. 37.
    Grimme S (2006) J Chem Phys 124:034108–034122Google Scholar
  38. 38.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT (2009)Google Scholar
  39. 39.
    Dunning Jr TH (1989) J Chem Phys. 90:1007–1023Google Scholar
  40. 40.
    Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6797–6806CrossRefGoogle Scholar
  41. 41.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305CrossRefGoogle Scholar
  42. 42.
    Leininger T, Nicklass A, Kuechle W, Stoll H, Dolg M, Bergner A (1996) Chem Phys Lett 255:274–280CrossRefGoogle Scholar
  43. 43.
    Ahlrichs R, May K (2000) Phys Chem Chem Phys 2:943–945CrossRefGoogle Scholar
  44. 44.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–111123CrossRefGoogle Scholar
  45. 45.
    Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod; ParisGoogle Scholar
  46. 46.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604CrossRefGoogle Scholar
  47. 47.
    Feixas F, Matito E, Duran M, Solá M, Silvi B (2010) J Chem Theory Comput 6:2736–2742CrossRefGoogle Scholar
  48. 48.
    Andrienko GA ChemCraft.
  49. 49.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  50. 50.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38CrossRefGoogle Scholar
  51. 51.
    Silvi B (2004) Phys Chem Chem Phys 6:256–260CrossRefGoogle Scholar
  52. 52.
    Du L, Zeng X-Q, Ge M-F, Sun Z, Wang D-X (2008) J Mol Struct 878:26–31CrossRefGoogle Scholar
  53. 53.
    Ang HG, Klapdor MF, Kwik WL, Lee YW, Mack HG, Mootz D, Poll W, Oberhammer H (1993) J Am Chem Soc 115:6929–6933CrossRefGoogle Scholar
  54. 54.
    Pearson RG (1963) J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of WroclawWroclawPoland

Personalised recommendations