Advertisement

Following Halogen Bonds Formation with Bader’s Atoms-in-Molecules Theory

  • Vincent TognettiEmail author
  • Laurent JoubertEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 22)

Abstract

In this chapter. we will show how Bader’s atoms-in-molecules theory enables to unravel the main physicochemical factors that drive the formation of halogen bonds, which are intriguing and fascinating noncovalent interactions at work as well as in crystals, biological and chemical systems, and which have found numerous applications in, among other fields, drug design and supramolecular chemistry. In particular, the use of Pendás and coworkers’ interacting quantum atoms scheme will cast the light on the nature of such interactions (more or less electrostatic, more or less covalent) and will provide useful hints to account for the existence or absence of energy minima in the corresponding potential energy surface. Importantly, such a rationalizing approach can be carried out whatever the system and also possesses predictive power.

Keywords

Halogen bonds Bader’s atoms-in-molecules theory Energy decomposition Interacting quantum atoms scheme Electrostatic interactions Electronic quantum exchange 

Notes

Acknowledgements

V.T. and L.J. gratefully acknowledge the CRIHAN computational centre for providing computational resources, the Centre National de la Recherche Scientifique (CNRS) for a “Chaire d’Excellence” at the University of Rouen, and the Labex SynOrg (ANR-11-LABX-0029).

References

  1. 1.
    Desiraju RG, Ho PS, Kloo L, Legon AC, Marquardt E, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem 85:1711–1713CrossRefGoogle Scholar
  2. 2.
    Metrangolo P, Pilati T, Resnati G (2006) Halogen bonding and other noncovalent interactions involving halogens: a terminology issue. Cryst Eng Comm 8:946–947CrossRefGoogle Scholar
  3. 3.
    Metrangolo P, Resnati G (eds) (2008) Halogen bonding: fundamentals and applications, structure and bonding. Struct Bond 126. Springer, BerlinGoogle Scholar
  4. 4.
    Metrangolo P, Resnati G (2012) Halogen bonding: where we are and where we are going. Cryst Growth Des 12:5835–5838CrossRefGoogle Scholar
  5. 5.
    Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12:7736–7747Google Scholar
  6. 6.
    Fourmigué M (2009) Halogen bonding: recent advances. Curr Opin Solid State Mater Sci 13:36–45CrossRefGoogle Scholar
  7. 7.
    Cavallo G, Metrangolo P, Pilati T, Resnati G, Terraneo G (2015) Halogen bond: a long overlooked interaction. Top Curr Chem, Top Curr Chem 358:1–17CrossRefGoogle Scholar
  8. 8.
    Scholfield MR, Zanden CM, Carter M, Ho PS (2013) Halogen bonding (X-bonding): a biological perspective. Protein Sci 22:139–152CrossRefGoogle Scholar
  9. 9.
    Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551CrossRefGoogle Scholar
  10. 10.
    Auffinger P, Hays FA, Westhof E, Ho S (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–167945CrossRefGoogle Scholar
  11. 11.
    Hardegger L-A, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher J-M, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed 50:314–318CrossRefGoogle Scholar
  12. 12.
    Jentzsch AV, Matile S (2013) Transmembrane halogen-bonding cascades. J Am Chem Soc 135:5302–5303CrossRefGoogle Scholar
  13. 13.
    Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388CrossRefGoogle Scholar
  14. 14.
    Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278CrossRefGoogle Scholar
  15. 15.
    Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen bonding–a novel interaction for rational drug design? J Med Chem 52:2854–2862CrossRefGoogle Scholar
  16. 16.
    Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The halogen bond in the design of functional supramolecular materials: recent advances. Acc Chem Res 46:2686–2695CrossRefGoogle Scholar
  17. 17.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen bonding in crystal engineering. Struct Bonding (Berlin) 126:105–136CrossRefGoogle Scholar
  18. 18.
    Meyer F, Dubois P (2013) Halogen bonding at work: recent applications in synthetic chemistry and materials science. Cryst Eng Comm 15:3058–3071CrossRefGoogle Scholar
  19. 19.
    Metrangolo P, Resanti G, Pilati T, Liantonio R, Meyer F (2007) Engineering functional materials by halogen bonding. J Polym Sci Part A Polym Chem 45:1–15CrossRefGoogle Scholar
  20. 20.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  21. 21.
    Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chem Eur J 7:2511–2519CrossRefGoogle Scholar
  22. 22.
    Voth AR, Hays FA, Ho PS (2007) Directing macromolecular conformation through halogen bonds. Proc Natl Acad Sci USA 104:6188–6193CrossRefGoogle Scholar
  23. 23.
    Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126:16–17CrossRefGoogle Scholar
  24. 24.
    Ueda K, Oguna M, Asaji T (2014) Halogen bond as controlling the crystal structure of 4-amino-3,5-dihalogenobenzoic acid and its effect on the positional ordering/disordering of acid protons. Cryst Growth Des 14:6189–6196CrossRefGoogle Scholar
  25. 25.
    Shirman T, Kaminker R, Freeman D, van der Boom ME (2011) Halogen-bonding mediated stepwise assembly of gold nanoparticles onto planar surfaces. ACS Nano 5:6553–6563CrossRefGoogle Scholar
  26. 26.
    Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM (2013) Organocatalysis by neutral multidentate halogen- bond donors. Angew Chem Int Ed 52:7028–7032CrossRefGoogle Scholar
  27. 27.
    Takeda Y, Hisakuni D, Lin C-H, Minataka S (2015) 2-Halogenoimidazolium salt catalyzed Aza-diels–alder reaction through halogen-bond formation. Org Lett 17:318–321CrossRefGoogle Scholar
  28. 28.
    Lefèvre G, Franc G, Adamo C, Jutand A, Ciofini I (2012) Influence of the formation of the halogen bond ArX.N on the mechanism of diketonate ligated copper-catalyzed amination of aromatic halides. Organometallics 31:914–920CrossRefGoogle Scholar
  29. 29.
    Benesi HA, Hildebrand JH (1948) Ultraviolet absorption bands of iodine in aromatic hydrocarbons. J Am Chem Soc 70:2832–2833CrossRefGoogle Scholar
  30. 30.
    Novick SE, Janda KC, Klemperer W (1976) HFClF: structure and bonding. J Chem Phys 65:5115–5121CrossRefGoogle Scholar
  31. 31.
    Stephens SL, Walker NR, Legon AC (2011) Internal rotation and halogen bonds in CF3I···NH3 and CF3I···N(CH3)3 probed by broadband rotational spectroscopy. Phys Chem Chem Phys 13:20736–20744CrossRefGoogle Scholar
  32. 32.
    Stephens SL, Mizukami W, Tew DP, Walker NR, Legon AC (2012) The halogen bond between ethene and a simple perfluoroiodoalkane: C2H4···ICF3 identified by broadband rotational spectroscopy. J Mol Spectrosc 280:47–53CrossRefGoogle Scholar
  33. 33.
    Weingarth M, Raouafi N, Jouvelet B, Duma L, Bodenhausen G, Boujlel K, Scöllhorn B, Tekley P (2008) Revealing molecular self-assembly and geometry of non-covalent halogen bonding by solid-state NMR spectroscopy. Chem Commun 45:5981–5983CrossRefGoogle Scholar
  34. 34.
    Chudzinski MG, McClary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559–10567CrossRefGoogle Scholar
  35. 35.
    Hauchecorne D, Szostak R, Herrebout WA, van der Vekken BJ (2009) CX···O Halogen bonding: interactions of trifluoro- methyl halides with dimethyl ether. Chem Phys Chem 10:2105–2115Google Scholar
  36. 36.
    Cappelletti D, Candori P, Pirano F, Belpassi L, Tarantelli F (2011) Nature and stability of weak halogen bonds in the gas phase: molecular beam scattering experiments and ab initio charge displacement calculations. Cryst Growth Des 11:4279–4283CrossRefGoogle Scholar
  37. 37.
    Hassel O, Hvoslef J (1954) The structure of bromine 1,4-dioxanate. Acta Chem Scand 8:873–873Google Scholar
  38. 38.
    Erdélyi M (2012) Halogen bonding in solution. Chem Soc Rev 41:3547–3557CrossRefGoogle Scholar
  39. 39.
    McAllister LJ, Bruce DW, Karadakov PB (2012) Quantum chemical investigation of attractive non-covalent interactions between halomethanes and rare gases. J Phys Chem A 116:10621–10628CrossRefGoogle Scholar
  40. 40.
    Riley KE, Hobza P (2011) Strength and character of halogen bonds in protein-ligand complexes. Cryst Growth Des 11:4272–4278CrossRefGoogle Scholar
  41. 41.
    Grabowski SJ (2012) QTAIM characteristics of halogen bond and related interactions. J Phys Chem A 116:1838–1845CrossRefGoogle Scholar
  42. 42.
    Grabowski SJ (2011) Halogen bond and its counterparts: Bent’s rule explains the formation of nonbonding interactions. J Phys Chem A 115:12340–12347CrossRefGoogle Scholar
  43. 43.
    Grabowski SJ (2012) Non-covalent interactions—QTAIM and NBO analysis. J Mol Model 19:4713–4721CrossRefGoogle Scholar
  44. 44.
    Grabowski SJ (2013) Hydrogen and halogen bonds are ruled by the same mechanisms. Phys Chem Chem Phys 15:7249–7259CrossRefGoogle Scholar
  45. 45.
    Domagała M, Matczak P, Palusiak M (2012) Halogen bond, hydrogen bond and N…C interaction—on interrelation among these three noncovalent interactions. Comp Theor Chem 998:26–33CrossRefGoogle Scholar
  46. 46.
    Palusiak M (2010) On the nature of halogen bond—the Kohn-Sham molecular orbital approach. J Mol Struct (Theochem) 945:89–92CrossRefGoogle Scholar
  47. 47.
    Xu L, Lv J, Sang P, Zou JW, Yu QS, Xu MB (2011) Comparative insight into the halogen bonding of 4-chloropyridine and its metal [CuI, ZnII] coordinations with halide ions: a theoretical study on M-C-X…X0. Chem Phys 379:66–72CrossRefGoogle Scholar
  48. 48.
    Riley KE, Hobza P (2008) Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  49. 49.
    Wang Z, Liu Z, Ding X, Yu X, Hou B, Yi P (2012) Comparisons of the halogen-bonded and hydrogen-bonded complexes of furan, thiophene and pyridine with Lewis acids (ClF, HCl). Comp Theor Chem 981:1–6CrossRefGoogle Scholar
  50. 50.
    Wang C, Danovich D, Mo Y, Shaik S (2014) On the nature of the halogen bond. J Chem Theory Comput 10:3726–3737CrossRefGoogle Scholar
  51. 51.
    Solomon RV, Vedha SA, Venuvanalingam P (2014) A new turn in codon-anticodon selection through halogen bonds. Phys Chem Chem Phys 16:7430–7440CrossRefGoogle Scholar
  52. 52.
    Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. Chem Phys Chem 14:278–294Google Scholar
  53. 53.
    Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  54. 54.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam’s Razor). Comp Theor Chem 998:2–8CrossRefGoogle Scholar
  55. 55.
    Politzer P, Murray JS, Clark T (2010) Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757CrossRefGoogle Scholar
  56. 56.
    Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44:57–64CrossRefGoogle Scholar
  57. 57.
    Johansson MP, Swart M (2013) Intramolecular halogen–halogen bonds? Phys Chem Chem Phys 15:11543–11553CrossRefGoogle Scholar
  58. 58.
    Bartashevich EV, Troitskaya EA, Tsirelson VG (2014) The N···I halogen bond in substituted pyridines as viewed by the source function and delocalization indices. Chem Phys Lett 601:144–148CrossRefGoogle Scholar
  59. 59.
    Bartashevich EV, Troitskaya EA, Pendás AM, Tsirelson VG (2016) Understanding the bifurcated halogen bonding N···Hal···N in bidentate diazaheterocyclic compounds. Comput Theor Chem 1053:229–237CrossRefGoogle Scholar
  60. 60.
    Bartashevich EV, Yushina ID, Stash AI, Tsirelson VG (2014) Halogen bonding and other iodine interactions in crystals of dihydrothiazolo(oxazino)quinolinium oligoiodides from the electron-density viewpoint. Cryst Growth Des 14:5674–5684CrossRefGoogle Scholar
  61. 61.
    Tognetti V, Joubert L (2013) On the physical role of exchange in the formation of an intramolecular bond path between two electronegative atoms. J Chem Phys 138:024102CrossRefGoogle Scholar
  62. 62.
    Tognetti V, Joubert L (2013) On critical points and exchange-related properties of intramolecular bonds between two electronegative atoms. Chem Phys Lett 579:122–125CrossRefGoogle Scholar
  63. 63.
    Syzgantseva OA, Tognetti V, Joubert L (2013) On the physical nature of Halogen bonds: a QTAIM study. J Phys Chem A 117:8969–8980CrossRefGoogle Scholar
  64. 64.
    Tognetti V, Joubert L (2014) Density functional theory and Bader’s atoms-in-molecules theory: towards a vivid dialogue. Phys Chem Chem Phys 16:14539–14550CrossRefGoogle Scholar
  65. 65.
    Tognetti V, Yahia-Ouahmed M, Joubert L (2014) Comment on “analysis of CF···FC interactions on cyclohexane and naphthalene frameworks”. J Phys Chem A 118:9791–9792CrossRefGoogle Scholar
  66. 66.
    Yahia-Ouahmed M, Tognetti V, Joubert L (2015) Halogen–halogen interactions in perhalogenated ethanes: an interacting quantum atoms study. Comput Theor Chem 1053:254–262CrossRefGoogle Scholar
  67. 67.
    Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659CrossRefGoogle Scholar
  68. 68.
    Tognetti V, Joubert L (2015) Electron density Laplacian and halogen bonds. Theor Chem Acc 134:90Google Scholar
  69. 69.
    Bader RFW (1990) Atoms in molecules: a quantum theory. the international series of monographs on chemistry: no. 22, Oxford University Press, New YorkGoogle Scholar
  70. 70.
    Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education, HarlowCrossRefGoogle Scholar
  71. 71.
    Pendás AM, Blanco MA, Francisco E (2004) Two-electron integrations in the quantum theory of atoms in molecules. J Chem Phys 120:4581–4592CrossRefGoogle Scholar
  72. 72.
    Blanco MA, Pendás AM, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109CrossRefGoogle Scholar
  73. 73.
    Pendás AM, Blanco MA, Francisco E (2006) Molecular energy decomposition scheme for atoms in molecules. J Chem Theory Comput 2:90–102CrossRefGoogle Scholar
  74. 74.
    Popelier PLA, Joubert L, Kosov DS (2001) Convergence of the electrostatic interaction based on topological atoms. J Phys Chem A 105:8254–8261CrossRefGoogle Scholar
  75. 75.
    Popelier PLA, Kosov DS (2001) Atom–atom partitioning of intramolecular and intermolecular Coulomb energy. J Chem Phys 114:6539–6547CrossRefGoogle Scholar
  76. 76.
    Solano CJF, Pendás AM, Francisco E, Blanco MA, Popelier PLA (2010) Convergence of the multipole expansion for 1,2 Coulomb interactions: the modified multipole shifting algorithm. J Chem Phys 132:194110CrossRefGoogle Scholar
  77. 77.
    Popelier PLA (2012) Quantum chemical topology: knowledgeable atoms in peptides. AIP Conf Proc 1456:261–268CrossRefGoogle Scholar
  78. 78.
    Bader RFW, Matta CF (2004) Atomic charges are measurable quantum expectation values: a rebuttal of criticisms of QTAIM charges. J Phys Chem A 108:8385–8394CrossRefGoogle Scholar
  79. 79.
    Tognetti V, Joubert L (2013) On the use of Bader’s atomic charges for the evaluation of charge transfers between ground and excited states. Chem Phys Lett 557:150–153CrossRefGoogle Scholar
  80. 80.
    Syzgantseva OA, Tognetti V, Boulangé A, Peixoto PA, Leleu S, Franck X, Joubert L (2014) Evaluating charge transfer in epicocconone analogues: toward a targeted design of fluorophores. J Phys Chem A 118(2014):757–764CrossRefGoogle Scholar
  81. 81.
    Pendás AM, Blanco MA, Francisco E (2006) The nature of the hydrogen bond: a synthesis from the interacting quantum atoms picture. J Chem Phys 125:184112CrossRefGoogle Scholar
  82. 82.
    Pendás AM, Francisco E, Blanco MA (2006) Binding energies of first row diatomics in the light of the interacting quantum atoms approach. J Phys Chem A 110:12864–12869CrossRefGoogle Scholar
  83. 83.
    Tiana D, Francisco E, Blanco MA, Pendás AM (2009) Using pseudopotentials within the interacting quantum atoms approach. J Phys Chem A 113:7963–7971CrossRefGoogle Scholar
  84. 84.
    Tiana D, Francisco E, Blanco MA, Macchi P, Sironi A, Pendás AM (2010) Bonding in classical and non-classical transition metal carbonyls: the interacting quantum atoms perspective. J Chem Theory Comput 6:1064–1074CrossRefGoogle Scholar
  85. 85.
    Bartashevich EV, Pendás AM, Tsirelson VG (2014) An anatomy of intramolecular atomic interactions in halogen-substituted trinitromethanes. Phys Chem Chem Phys 16:16780–16789CrossRefGoogle Scholar
  86. 86.
    Popov AA, Avdoshenko SM, Pendás AM, Dunsch L (2012) Bonding between strongly repulsive metal atoms: an oxymoron made real in a confined space of endohedral metallofullerenes. Chem Commun 48:8031–8050CrossRefGoogle Scholar
  87. 87.
    Ferro-Costas D, Pendás AM, González Mosquera RA (2014) Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules. Phys Chem Chem Phys 16:9249–9258CrossRefGoogle Scholar
  88. 88.
    Matta CF (2010) How dependent are molecular and atomic properties on the electronic structure method? comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. J Comput Chem 31:1297–1311Google Scholar
  89. 89.
    Matta CF, Arabi AA, Keith TA (2007) Atomic partitioning of the dissociation energy of the PO(H) bond in hydrogen phosphate anion (HPO42-): disentangling the effect of Mg2+. J Phys Chem A 111:8864–8872CrossRefGoogle Scholar
  90. 90.
    Riley KE, Murray JS, Fanfrlík J, Rezáč J, Solá RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds. J Mol Model 19:4651–4659CrossRefGoogle Scholar
  91. 91.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  92. 92.
    Cooper VR (2010) Van der Waals density functional: an appropriate exchange functional. Phys Rev B 81:161104CrossRefGoogle Scholar
  93. 93.
    Foroutan-Nejad C, Shahbazian S, Marek R (2014) Toward a consistent interpretation of the QTAIM: tortuous link between chemical bonds, interactions and bond/line paths. Chem Eur J 20:10140–10152CrossRefGoogle Scholar
  94. 94.
    Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  95. 95.
    Popelier P, Logothetis G (1998) Characterization of an agostic bond on the basis of the electron density. J Organomet Chem 555:101–111CrossRefGoogle Scholar
  96. 96.
    Tognetti V, Joubert L, Raucoules R, De Bruin T, Adamo C (2012) Characterizing agosticity using the quantum theory of atoms in molecules: bond critical points and their local properties. J Phys Chem A 116:5472–5479CrossRefGoogle Scholar
  97. 97.
    Sahi A, Arunan E (2014) Hydrogen bonding, halogen bonding and lithium bonding: an atoms in molecules and natural bond orbital perspective towards conservation of total bond order, inter- and intra-molecular bonding. Phys Chem Chem Phys 26:22935–22952CrossRefGoogle Scholar
  98. 98.
    Tognetti V, Joubert L, Cortona P, Adamo A (2009) Towards a combined DFT/QTAIM description of agostic bonds: the critical case of a Nb(III) complex. J Phys Chem A 113:12322–12327CrossRefGoogle Scholar
  99. 99.
    Tognetti V, Joubert L, Adamo C (2010) Making density functional theory and the quantum theory of atoms in molecules converse: a local approach. J Chem Phys 132:211101CrossRefGoogle Scholar
  100. 100.
    Bonnet ML, Tognetti V (2011) The influence of density functional approximations on the description of LiH + NH3 → LiNH2 + H2 reaction. Chem Phys Lett 511:427–433CrossRefGoogle Scholar
  101. 101.
    Kozuch S, Martin JML (2013) Halogen bonds: benchmarks and theoretical analysis. J Chem Theor Comput 9:1918–1931CrossRefGoogle Scholar
  102. 102.
    Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620Google Scholar
  103. 103.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian 09, revision D.01. WallingfordGoogle Scholar
  104. 104.
    Keith TA (2014) AIMAll software, version 14.04.17 professional, http://aim.tkgristmill.com
  105. 105.
    Tognetti V, Joubert L (2011) On the influence of density functional approximations on some local Bader’s atoms-in-molecules properties. J Phys Chem A 115:5505–5515CrossRefGoogle Scholar
  106. 106.
    Johnson ER, Kelnan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506CrossRefGoogle Scholar
  107. 107.
    Cormanich RA, RIttner R, O’Hagan D, Bühl M (2014) Analysis of CF···FC interactions on cyclohexane and naphthalene frameworks. J Phys Chem A 118:7901–7910CrossRefGoogle Scholar
  108. 108.
    Jaharomi HJ, Eskanderi K (2013) Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 24:1281–1287CrossRefGoogle Scholar
  109. 109.
    Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneao T (2011) The fluorine atom as a halogen bond donor, viz. a positive site. Cryst Eng Comm 13:6593–6596Google Scholar
  110. 110.
    Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneao G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238–4246CrossRefGoogle Scholar
  111. 111.
    Guégan F, Mignon P, Tognetti V, Joubert L, Morell C (2014) Dual descriptor and molecular electrostatic potential: complementary tools for the study of the coordination chemistry of ambiphilic ligands. Phys Chem Chem Phys 16:15558–15569CrossRefGoogle Scholar
  112. 112.
    Tognetti V, Morell C, Ayers PW, Joubert L, Chermette H (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. Phys Chem Chem Phys 15:14465–14475CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRSCedexFrance

Personalised recommendations