Advertisement

Localized Structures at the Hückel Level, a Hückel-Derived Valence Bond Method

  • Yannick CarissanEmail author
  • Nicolas Goudard
  • Denis Hagebaum-Reignier
  • Stéphane Humbel
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 22)

Abstract

A simple Hückel Hamiltonian is used and modified to describe localized states, where the electron pairs are confined to bonds between two atoms, or to lone pairs. The electronic delocalization can be considered either as a mixture of these localized states, or through a standard Hückel calculation. The two Hückel-Lewis methods described here attempt to find the coefficients of the mixture, based on energy or overlap consistence with the standard Hückel results. After the description of the two methods, test examples are used to show advantages and drawbacks of the different approaches. In any case, the results are compared to the NBO-NRT approach which is used on the electronic density obtained from standard DFT hybrids calculations such as B3LYP/6-31+G(d). This chapter ends with an introduction to the HuLiS program in which the two methods are implemented.

Keywords

Wave Function Natural Bond Orbital Benzene Molecule Slater Determinant Trust Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Carissan Y, Hagebaum-Reignier D, Goudard N, Humbel S (2008) J Phys Chem A 112(50):13256CrossRefGoogle Scholar
  2. 2.
    Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley-Interscience, HobokenGoogle Scholar
  3. 3.
    Cooper DL (ed) (2002) Valence bond theory. Elsevier ScienceGoogle Scholar
  4. 4.
    Chirgwin BH, Coulson CA (1950) Proc R Soc Lond Math Phys Eng Sci 201(1065):196CrossRefGoogle Scholar
  5. 5.
    Jensen F (2006) Introduction to computational chemistry. WileyGoogle Scholar
  6. 6.
    Deglmann P, Schäfer A, Lennartz C (2015) Int J Quantum Chem 115(3):107CrossRefGoogle Scholar
  7. 7.
    Hirao K, Nakano H, Nakayama K, Dupuis M (1996) J Chem Phys 105(20):9227CrossRefGoogle Scholar
  8. 8.
    Thorsteinsson T, Cooper D, Gerratt J, Karadakov P, Raimondi M (1996) Theor Chim Acta 93(6):343CrossRefGoogle Scholar
  9. 9.
    Glendening ED, Weinhold F (1998) J Comput Chem 19(6):593CrossRefGoogle Scholar
  10. 10.
    Bader RF (1994) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  11. 11.
    Shaik S, Danovich D, Silvi B, Lauvergnat D, Hiberty P (2005) Chem Eur J 11(21):6358Google Scholar
  12. 12.
    Rahm M, Christe KO (2013) ChemPhysChem 14(16):3714CrossRefGoogle Scholar
  13. 13.
    Glendening ED, Weinhold F (1998) J Comput Chem 19(6):610CrossRefGoogle Scholar
  14. 14.
    Glendening ED, Badenhoop JK, Weinhold F (1998) J Comput Chem 19(6):628CrossRefGoogle Scholar
  15. 15.
    Rauk A (2001) Orbital interaction theory of organic chemistry, 2nd edn. WileyGoogle Scholar
  16. 16.
    Van-Catledge F (1980) J Org Chem 45:4801CrossRefGoogle Scholar
  17. 17.
    Hückel E (1957) Z Für Elektrochem. Berichte Bunsenges. Für Phys Chem 61(8):866Google Scholar
  18. 18.
    Kutzelnigg W (2007) J Comput Chem 28(1):25CrossRefGoogle Scholar
  19. 19.
    Humbel S (2007) J Chem Educ 84(8):1277CrossRefGoogle Scholar
  20. 20.
    Hagebaum-Reignier D, Girardi R, Carissan Y, Humbel S (2007) J Mol Struct Theochem 817(1–3):99CrossRefGoogle Scholar
  21. 21.
    Löwdin PO (1955) Phys Rev 97(6):1474CrossRefGoogle Scholar
  22. 22.
    Leasure SC, Balint-Kurti GG (1985) Phys Rev A 31(4):2107CrossRefGoogle Scholar
  23. 23.
    Glendening ED, Landis CR, Weinhold F (2013) J Comput Chem 34(16):1429CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc. Wallingford CT (2009)Google Scholar
  25. 25.
    Levin G, Goddard WA (1975) J Am Chem Soc 97(7):1649CrossRefGoogle Scholar
  26. 26.
    Levin G, Goddard WA (1975) Theoret Chim Acta 37(4):253CrossRefGoogle Scholar
  27. 27.
    Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109(2):363CrossRefGoogle Scholar
  28. 28.
    Mach TJ, King RA, Crawford TD (2010) J Phys Chem A 114(33):8852CrossRefGoogle Scholar
  29. 29.
    Olsen S, McKenzie RH (2012) J Chem Phys 136(23):234313CrossRefGoogle Scholar
  30. 30.
    Schleyer PR (2001) Chem Rev 101(5):1115Google Scholar
  31. 31.
    Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014) Chem Rev 114(12):6383CrossRefGoogle Scholar
  32. 32.
    Norbeck JM, Gallup GA (1974) J Am Chem Soc 96(11):3386CrossRefGoogle Scholar
  33. 33.
    Goudard N, Carissan Y, Hagebaum-Reignier D, Humbel S (2014) http://ism2.univ-amu.fr/hulis or mobile version: http://ism2.univ-amu.fr/m-hulis
  34. 34.
    Aihara J (1976) J Am Chem Soc 98(10):2750CrossRefGoogle Scholar
  35. 35.
    Gutman I, Milun M, Trinajstic N (1977) J Am Chem Soc 99(6):1692CrossRefGoogle Scholar
  36. 36.
    Gutman I, Milun M, Trinajstic N (1976) Croat Chem Acta 48:87Google Scholar
  37. 37.
    Chauvin R, Lepetit C (2013) Phys Chem Chem Phys 15(11):3855CrossRefGoogle Scholar
  38. 38.
    Balasubramanian K (1991) J Math Chem 7(1):353CrossRefGoogle Scholar
  39. 39.
    Schaad LJ, Hess BA (2001) Chem Rev 101(5):1465CrossRefGoogle Scholar
  40. 40.
    Malrieu JP, Gicquel M, Fowler PW, Lepetit C, Heully JL, Chauvin R (2008) J Phys Chem A 112(50):13203CrossRefGoogle Scholar
  41. 41.
    Chauvin R, Lepetit C, Fowler PW, Malrieu JP (2010) Phys Chem Chem Phys 12(20):5295CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yannick Carissan
    • 1
    Email author
  • Nicolas Goudard
    • 1
  • Denis Hagebaum-Reignier
    • 1
  • Stéphane Humbel
    • 1
  1. 1.Aix Marseille UniversitéCentrale Marseille, CNRS, iSm2, UMR 7313MarseilleFrance

Personalised recommendations