A New Subsystem-Based Definition of Generalized Rough Set Model

  • Caihui LiuEmail author
  • Meizhi Wang
  • Yanfei Dai
  • Yueli Luo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9437)


The generalization of Pawlak rough set model always attracts the attentions of the researchers in the rough set society. In this paper, we propose a new subsystem-based definition of generalized rough set model and disclose the corresponding properties. We also discuss the interrelationships between our definition and the existing ones, the outputs show that our definition is effective and reasonable.


Binary relation Generalized rough set Lower and upper approximations \(\sigma \)-algebra 



This work was supported by the China National Natural Science Foundation of Youth Science Foundation under Grant No.: 61305052, 61403329, the State Scholarship Fund of China (File No. 201409865003), the Key Technology Research and Development Program of Education Bureau of Jiangxi Province of China under Grant No.: GJJ14660, the Key Technology Research and Development Program of Jiangxi Province of China under Grant No.: 20142BBF60010, 20151BBF60071.


  1. 1.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  2. 2.
    Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg (1998)Google Scholar
  3. 3.
    Yao, Y.Y., Wong, S.K., Lingras, P.: A decision-theoretic rough setmodel. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)Google Scholar
  4. 4.
    Yao, Y.: Decision-theoretic rough set models. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Pei, D.W., Xu, Z.B.: Transformation of rough set models. Knowl. Based Syst. 20, 745–751 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177(22), 4997–5011 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zakowski, W.: Axiomatization in the space (\(U\), \(\pi \)). Demonstratio Mathematica XVI, 761–769 (1983)zbMATHGoogle Scholar
  8. 8.
    Bonikowski, Z., Bryniariski, E., Skardowska, U.W.: Extension and intentions in the rough set theory. Inf. Sci. 107, 149–167 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhu, W., Wang, F.Y.: Reduction and axiomatization of covering generalized rough sets. Inf. Sci. 152, 17–230 (2003)CrossRefGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 191–209 (1990)CrossRefGoogle Scholar
  11. 11.
    He, Q., Wu, C.X., Chen, D.G.: Fuzzy rough set based attribute reduction for information systems with fuzzy decisions. Knowl. Based Syst. 24(5), 689–696 (2011)CrossRefGoogle Scholar
  12. 12.
    Huang, B.: Graded dominance interval-based fuzzy objective information systems. Knowl. Based Syst. 24(7), 1004–1012 (2011)CrossRefGoogle Scholar
  13. 13.
    Yao, Y.Y., Yao, B.X.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yao, Y.Y.: Constructive and algebraic methods of theory of rough sets. Inf. Sci. 109, 21–47 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, W.X., Wu, W.Z., Liang, J.Y., Li, D.Y.: Theory and Method of Rough Sets. Science Press, Beijing (2001). (in Chinese)Google Scholar
  16. 16.
    Liu, G.L., Zhu, K.: The relationship among three types of rough approximation pairs. Knowl. Based Syst. 60, 28–34 (2014)CrossRefGoogle Scholar
  17. 17.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Boston (1991)CrossRefGoogle Scholar
  18. 18.
    Yao, J.T., Ciucci, D., Zhang, Y.: Generalized rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) The Springer Handbook of Computational Intelligence, pp. 413–424. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  20. 20.
    Yao, Y.Y., Chen, Y.H.: Subsystem based generalizations of rough set approximations. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 210–218. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Wiweger, A.: On topological rough sets. Bull. Pol. Acad. Sci. Math. 37, 89–93 (1989)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Javinen, J.: On the structure of rough approximations. Fundam. Inf. 53(2), 135–153 (2002)MathSciNetGoogle Scholar
  23. 23.
    Cattaneo, G.: Abstract approximation spaces for rough theories. Rough Sets Knowl. Discov. 1, 59–98 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yao, Y.Y.: The two sides of the theory of rough sets. Knowl. Based Syst. 80, 67–77 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Caihui Liu
    • 1
    • 2
    Email author
  • Meizhi Wang
    • 3
  • Yanfei Dai
    • 1
  • Yueli Luo
    • 1
  1. 1.Department of Mathematics and Computer ScienceGannan Normal UniversityGanzhouPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Department of Physical EducationGannan Normal UniversityGanzhouChina

Personalised recommendations