Rough Set Approximations in Multi-scale Interval Information Systems

  • Shen-Ming GuEmail author
  • Ya-Hong Wan
  • Wei-Zhi Wu
  • Tong-Jun Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9437)


With the view point of granular computing, the notion of a granule may be interpreted as one of the numerous small particles forming a larger unit. There are different granules at different levels of scale in data sets having hierarchical structures. Human beings often observe objects or deal with data hierarchically structured at different levels of granulations. And in real-world applications, there may exist multiple types of data in interval information systems. Therefore, the concept of multi-scale interval information systems is first introduced in this paper. The lower and upper approximations in multi-scale interval information systems are then defined, and the accuracy and the roughness are also explored. Monotonic properties of these rough set approximations with different levels of granulations are analyzed with illustrative examples.


Granular computing Granules Interval information systems Multi-scale information systems Rough sets 



This work is supported by grants from the National Natural Science Foundation of China (Nos. 61272021, 61202206 and 61173181), and the Zhejiang Provincial Natural Science Foundation of China (Nos. LZ12F03002, LY14F030001), and the Open Foundation from Marine Sciences in the Most Important Subjects of Zhejiang (No. 20130109).


  1. 1.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  2. 2.
    Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Trans. Fuzzy Syst. 16, 320–330 (2008)CrossRefGoogle Scholar
  3. 3.
    Bittner, T., Smith, B.: A theory of granular partitions. In: Duckham, M., Goodchild, M.F., Worboys, M.F. (eds.) Foundations of Geographic Information Science, pp. 117–151. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  4. 4.
    Cornelis, C., Jensen, R., Hurtado, G., Slezak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180, 209–224 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dai, J., Tian, H., Wang, W., Liu, L.: Decision rule mining using classification consistency rate. Knowl. Based Syst. 43, 95–102 (2013)CrossRefGoogle Scholar
  6. 6.
    Gu, S.-M., Wu, W.-Z.: Knowledge acquisition in inconsistent multi-scale decision systems. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 669–678. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Gu, S.M., Wu, W.Z.: On knowledge acquisition in multi-scale decision systems. Int. J. Mach. Learn. Cybern. 4, 477–486 (2013)CrossRefGoogle Scholar
  8. 8.
    Gu, S.M., Wu, W.Z., Zheng, Y.: Rule acquisition in consistent multi-scale decision systems. In: Proceedings of 8th International conference on Fuzzy System and Knowledge Discovery, pp. 390–393. IEEE Computer Society, Los Alamitos (2011)Google Scholar
  9. 9.
    Gu, S.M., Li, X., Wu, W.Z., Nian, H.: Multi-granulation rough sets in multi-scale information systems. In: Proceedings of the 2013 International Conference on Machine Learning and Cybernetics, pp. 108–113, Tianjin (2013)Google Scholar
  10. 10.
    Hu, Q.H., Liu, J.F., Yu, D.R.: Mixed feature selection based on granulation and approximation. Knowl. Based Syst. 21, 294–304 (2008)CrossRefGoogle Scholar
  11. 11.
    Inuiguchi, M., Hirano, S., Tsumoto, S.: Rough Set Theory and Granular Computing. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    Keet, C.M.: A formal theory of granularity. Ph.D. thesis, KRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy (2008)Google Scholar
  13. 13.
    Leung, Y., Zhang, J.S., Xu, Z.B.: Clustering by scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1396–1410 (2000)CrossRefGoogle Scholar
  14. 14.
    Leung, Y., Fischer, M., Wu, W., Mi, J.: A rough set approach for the discovery of classification rules in interval-valued information systems. Int. J. Approx. Reason. 47, 233–246 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lin, T.Y., Yao, Y.Y., Zadeh, L.A.: Data Mining, Rough Sets and Granular Computing. Physica- Verlag, Heidelberg (2002) CrossRefGoogle Scholar
  16. 16.
    Ma, J.-M., Zhang, W., Wu, W.-Z., Li, T.-J.: Granular computing based on a generalized approximation space. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 93–100. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  17. 17.
    Mi, J.S., Wu, W.Z., Zhang, W.X.: Approaches to knowledge reduction based on variable precision rough setsmodel. Inf. Sci. 159, 255–272 (2004)CrossRefGoogle Scholar
  18. 18.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  19. 19.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Boston (1991)CrossRefGoogle Scholar
  20. 20.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Knowledge structure, knowledge granulation and knowledge distance in a knowledge base. Int. J. Approx. Reason. 50, 174–188 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Qian, Y.H., Liang, J.Y., Yao, Y.Y., Dang, C.Y.: MGRS: a multi-granulation rough set. Inf. Sci. 180, 949–970 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Qian, Y.H., Liang, J.Y., Dang, C.Y.: Interval ordered information systems. Comput. Math. Appl. 56, 1994–2009 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tsumoto, S.: Automated extraction of hierarchical decision rules from clinical databases using rough set model. Expert Syst. Appl. 24, 189–197 (2003)CrossRefGoogle Scholar
  24. 24.
    Wu, W.-Z.: Rough set approximations based on granular labels. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 93–100. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  25. 25.
    Wu, W.Z., Leung, Y.: Theory and applications of granular labelled partitions in multi-scale decision tables. Inf. Sci. 181, 3878–3897 (2011)CrossRefGoogle Scholar
  26. 26.
    Wu, W.Z., Leung, Y.: Optimal scale selection for multi-scale decision tables. Int. J. Approx. Reason. 54, 1107–1129 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yao, Y.Y.: Stratified rough sets and granular computing. In: Dave, R.N., Sudkamp, T. (eds.) Proceedings of 18th International Conference of the North American Fuzzy Information Processing Society, pp. 800–804. IEEE Press, New York (1999)Google Scholar
  28. 28.
    Yao, Y.Y.: Information granulation and rough set approximation. Int. J. Intell. Syst. 16, 87–104 (2001)CrossRefGoogle Scholar
  29. 29.
    Yao, Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Swiniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    Yao, Y.Y.Y., Liau, C.-J., Zhong, N.: Granular computing based on rough sets, quotient space theory, and belief functions. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 152–159. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  31. 31.
    Yao, Y.Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning. Fundam. Inform. 27, 289–298 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar
  33. 33.
    Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Shen-Ming Gu
    • 1
    • 2
    Email author
  • Ya-Hong Wan
    • 1
    • 2
  • Wei-Zhi Wu
    • 1
    • 2
  • Tong-Jun Li
    • 1
    • 2
  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanPeople’s Republic of China
  2. 2.Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang ProvinceZhejiang Ocean UniversityZhoushanPeople’s Republic of China

Personalised recommendations