Building Granular Systems - from Concepts to Applications

  • Marcin SzczukaEmail author
  • Andrzej Jankowski
  • Andrzej Skowron
  • Dominik Ślęzak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9437)


Granular Computing (GrC) is a domain of science aiming at modeling computations and reasoning that deals with imprecision, vagueness and incompleteness of information. Computations in GrC are performed on granules which are obtained as a result of information granulation. Principal issues in GrC concern processes of representation, construction, transformation and evaluation of granules. It also requires aligning with some of the fundamental computational issues concerning, e.g., interaction and adaptation. The paper outlines the current status of GrC and provides the general overview of the process of building granular solutions to challenges posed by various real-life problems involving granularity. It discusses the steps that lead from raw data and imprecise/vague specification towards a complete, useful application of granular paradigm.


Granular computing Information granulation Vagueness Computing with words Soft computing Cyber-physical systems 


  1. 1.
    Lin, T.Y., et al.: Granular computing - topical section. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 4283–4435. Springer, New York (2009)Google Scholar
  2. 2.
    Yao, Y., Zhong, N.: Granular computing. In: Wah, B., Wah, B.M. (eds.) Wiley Encyclopedia of Computer Science and Engineering. Wiley, New York (2008)Google Scholar
  3. 3.
    Pedrycz, W.: History and development of granular computing. In: UNESCO-EOLSS Joint Committee, (ed.) Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Paris (2012)Google Scholar
  4. 4.
    Apolloni, B., Pedrycz, W., Bassis, S., Malchiodi, D.: The Puzzle of Granular Computing. Studies in Computational Intelligence, vol. 138. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  6. 6.
    Bello, R., Falcón, R., Pedrycz, W.: Granular Computing: At the Junction of Rough Sets and Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol. 234. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Pedrycz, W.: Granular Computing Analysis and Design of Intelligent Systems. CRC Press, Taylor and Francis, Boca Raton (2013)CrossRefGoogle Scholar
  8. 8.
    Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation: An Application of Rough Mereology. Intelligent Systems Reference Library. Springer, Switzerland (2015)CrossRefGoogle Scholar
  9. 9.
    Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  10. 10.
    Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  11. 11.
    Lin, T.Y., Yao, Y., Zadeh, L.A. (eds.): Rough Sets, Granular Computing and Data Mining. Studies in Fuzziness and Soft Computing. Physica-Verlag, Heidelberg (2001)Google Scholar
  12. 12.
    Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision-Making. Springer, Singapore (1999)zbMATHGoogle Scholar
  13. 13.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  14. 14.
    Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Studies in Fuzziness and Soft Computing, vol. 70. Physica-Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  15. 15.
    Pedrycz, W. (ed.): Knowledge-Based Clustering. From Data to Information Granules. Wiley, New York (2005)zbMATHGoogle Scholar
  16. 16.
    Bargiela, A., Pedrycz, W. (eds.): Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol. 182. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Pedrycz, W., Chen, S.M. (eds.): Granular Computing and Intelligent Systems Design with Information Granules of Higher Order and Higher Type. Studies in Computational Intelligence, vol. 502. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Pedrycz, W., Chen, S.M. (eds.): Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, vol. 8. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Yao, J.T. (ed.): Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. IGI Global, Hershey (2010)Google Scholar
  20. 20.
    Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems. Physica-Verlag, Heidelberg (1999)zbMATHGoogle Scholar
  21. 21.
    Zhang, L., Zhang, B. (eds.): Quotient Space Based Problem Solving: A Theoretical Foundation of Granular Computing. Elsevier, Amsterdam (2014)zbMATHGoogle Scholar
  22. 22.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Generalized theory of uncertainty (GTU) - principal concepts and ideas. Comput. Stat. Data Anal. 51, 15–46 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zadeh, L.A. (ed.): Computing with Words: Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, vol. 277. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  25. 25.
    Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (2000)Google Scholar
  26. 26.
    Baker, G., Hacker, P.: Wittgenstein: Understanding and Meaning. Analytical Commentary on the Philosophical Investigations, Part II: Exegesis 1–184, vol. 1, 2nd edn. Wiley-Blackwell Publishing, Oxford (2004)Google Scholar
  27. 27.
    Zadeh, L.A.: Fuzzy logic = Computing with words. IEEE Trans. Fuzzy Syst. 2, 103–111 (1996)CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits Syst. 45, 105–119 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC–3, 28–44 (1973)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)CrossRefGoogle Scholar
  31. 31.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  34. 34.
    Moore, R., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  35. 35.
    Pedrycz, W.: From fuzzy sets to shadowed sets: interpretation and computing. Int. J. Intell. Syst. 24(1), 48–61 (2009)CrossRefGoogle Scholar
  36. 36.
    Sakai, H., Okuma, H., Nakata, M., Ślȩzak, D.: Stable rule extraction and decision making in rough non-deterministic information analysis. Int. J. Hybrid Intell. Syst. 8(1), 41–57 (2011)CrossRefGoogle Scholar
  37. 37.
    Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information databases and non-deterministic information systems. Fundamenta Informaticae 130(3), 343–376 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ślȩzak, D., Synak, P., Wojna, A., Wróblewski, J.: Two database related interpretations of rough approximations: data organization and query execution. Fundamenta Informaticae 127(1–4), 445–459 (2013)Google Scholar
  39. 39.
    Pankratieva, V.V., Kuznetsov, S.O.: Relations between proto-fuzzy concepts, crisply generated fuzzy concepts, and interval pattern structures. Fundamenta Informaticae 115(4), 265–277 (2012)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Lin, T.Y.: Data mining and machine oriented modeling: a granular computing approach. Appl. Intell. 13(2), 113–124 (2000)CrossRefGoogle Scholar
  41. 41.
    Polkowski, L., Skowron, A.: Rough mereological calculi of granules: a rough set approach to computation. Comput. Intell. 17(3), 472–492 (2001)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Skowron, A., Stepaniuk, J., Peters, J.F., Świniarski, R.W.: Calculi of approximation spaces. Fundamenta Informaticae 72, 363–378 (2006)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Krasuski, A., Jankowski, A., Skowron, A., Ślȩzak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: 2013 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Atlanta, Georgia, USA, 17–20 November 2013, Workshop Proceedings, pp. 229–236. IEEE Computer Society (2013)Google Scholar
  44. 44.
    Szczuka, M.S., Skowron, A., Stepaniuk, J.: Function approximation and quality measures in rough-granular systems. Fundamenta Informaticae 109(3), 339–354 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Pedrycz, W.: The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J. Inf. Process. Syst. 7(3), 397–412 (2011)CrossRefGoogle Scholar
  46. 46.
    Apolloni, B., Pedrycz, W., Bassis, S., Malchiodi, D.: The Puzzle of Granular Computing. Studies in Computational Intelligence, vol. 138. Springer, Heidelberg (2008)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Marcin Szczuka
    • 1
    Email author
  • Andrzej Jankowski
    • 2
  • Andrzej Skowron
    • 1
    • 3
  • Dominik Ślęzak
    • 1
    • 4
  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.Knowledge Technology FoundationWarsawPoland
  3. 3.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  4. 4.Infobright Inc.WarsawPoland

Personalised recommendations