On Generalized Decision Functions: Reducts, Networks and Ensembles

  • Dominik ŚlęzakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9437)


We summarize our observations on utilizing generalized decision functions to define dependencies between attributes in decision systems. We refer to well-known criteria for attribute selection and less-known results linking generalized decisions with the notions of multivalued dependency and conditional independence. We formulate the problem of finding the simplest ensembles of subsets of attributes which allow to retrieve original decision values of considered objects by intersecting the sets of possible decisions induced by particular attributes.


Rough sets Generalized decision functions Decision reducts 


  1. 1.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ślęzak, D.: Decomposition and synthesis of decision tables with respect to generalized decision functions. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization - A New Trend in Decision Making, pp. 110–135. Springer, Singapore (1999)Google Scholar
  4. 4.
    Ślęzak, D.: Approximate Decision Reducts (in Polish). Ph.D. thesis under Supervision of A. Skowron. University of Warsaw, Poland (2002)Google Scholar
  5. 5.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory. System Theory, Knowledge Engineering and Problem Solving, vol. 11, pp. 331–362. Kluwer, Dordrecht (1992)Google Scholar
  6. 6.
    Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book, 2nd edn. Prentice-Hall, Englewood Cliff (2008)Google Scholar
  7. 7.
    Ślęzak, D.: Degrees of conditional (in)dependence: a framework for approximate bayesian networks and examples related to the rough set-based feature selection. Inf. Sci. 179(3), 197–209 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mate (1988)zbMATHGoogle Scholar
  9. 9.
    Betliński, P., Ślęzak, D.: The problem of finding the sparsest bayesian network for an input data set is NP-hard. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol. 7661, pp. 21–30. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Rokach, L., Maimon, O.Z.: Data Mining with Decision Trees: Theory and Applications. World Scientific, Singapore (2008)zbMATHGoogle Scholar
  11. 11.
    Skowron, A., Grzymała-Busse, J.W.: From rough set theory to evidence theory. In: Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 193–236. Wiley, New York (1994)Google Scholar
  12. 12.
    Ślęzak, D.: Normalized decision functions and measures for inconsistent decision tables analysis. Fundamenta Informaticae 44(3), 291–319 (2000)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Ślęzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3–4), 365–390 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Moshkov, M.J., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets - Theory and Applications. Studies in Computational Intelligence, vol. 145. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  15. 15.
    Kleene, S.C.: Mathematical Logic. Wiley, New York (1967)zbMATHGoogle Scholar
  16. 16.
    Szczuka, M.S., Ślęzak, D.: Feedforward neural networks for compound signals. Theor. Comput. Sci. 412(42), 5960–5973 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Widz, S., Ślęzak, D.: Rough set based decision support - models easy to interpret. In: Peters, G., Lingras, P., Ślęzak, D., Yao, Y. (eds.) Rough Sets: Selected Methods and Applications in Management & Engineering. Advanced Information and Knowledge Processing, pp. 95–112. Springer, London (2012)CrossRefGoogle Scholar
  18. 18.
    Wróblewski, J.: Adaptive aspects of combining approximation spaces. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing - Techniques for Computing with Words. Cognitive Technologies, pp. 139–156. Springer, Heidelberg (2003)Google Scholar
  19. 19.
    Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  20. 20.
    Ślęzak, D.: Rough sets and functional dependencies in data: foundations of association reducts. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Chan, K.C.C. (eds.) Transactions on Computational Science V. LNCS, vol. 5540, pp. 182–205. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  21. 21.
    Dembczyński, K., Greco, S., Kotłowski, W., Słowiński, R.: Optimized generalized decision in dominance-based rough set approach. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 118–125. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Stefanowski, J., Tsoukiás, A.: Incomplete information tables and rough classification. Comput. Intell. 17(3), 545–566 (2001)CrossRefGoogle Scholar
  23. 23.
    Ślęzak, D., Synak, P., Wojna, A., Wróblewski, J.: Two database related interpretations of rough approximations: data organization and query execution. Fundamenta Informaticae 127(1–4), 445–459 (2013)Google Scholar
  24. 24.
    Ganter, B., Meschke, C.: A formal concept analysis approach to rough data tables. In: Peters, J.F., Skowron, A., Sakai, H., Chakraborty, M.K., Slezak, D., Hassanien, A.E., Zhu, W. (eds.) Transactions on Rough Sets XIV. LNCS, vol. 6600, pp. 37–61. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.Infobright Inc., PolandWarsawPoland

Personalised recommendations