Preclusivity and Simple Graphs

  • Giampiero Chiaselotti
  • Davide Ciucci
  • Tommaso Gentile
  • Federico Infusino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9437)


The adjacency relation of a simple undirected graph is a preclusive (irreflexive and symmetric) relation. Hence, it originates a preclusive space enabling us to define the lower and upper preclusive approximations of graphs and two orthogonality graphs. Further, the possibility of defining the similarity lower and upper approximations and the sufficiency operator on graphs will be investigated, with particular attention to complete and bipartite graphs. All these mappings will be put in relation with Formal Concept Analysis and the theory of opposition.


Undirected graphs Preclusivity relation Sufficiency operator Formal concept analysis Theory of opposition 


  1. 1.
    Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) lattices). Stud. Logica 01, 47–77 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. Studies in Fuzziness and Soft Computing, pp. 59–98. Physica, Heidelberg (1998)Google Scholar
  3. 3.
    Cattaneo, G., Nisticò, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets Syst. 33, 165–190 (1989)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Li, J.: An application of rough sets to graph theory. Inf. Sci. 201, 114–127 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chiaselotti, G., Ciucci, D., Gentile, T.: Simple undirected graphs as formal contexts. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS, vol. 9113, pp. 287–302. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  6. 6.
    Chiaselotti, G., Ciucci, D., Gentile, T., Infusino, F.: Rough set theory applied to simple undirected graphs. In: Ciucci, D., Wang, G., Mitra, S., Wu, W. (eds.) RSKT 2015. LNCS, vol. 9436. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Chiaselotti, G., Ciucci, D., Gentile, T., Infusino, F.: Preclusivity and simple graphs: the \(n\)-cycle and \(n\)-path cases. In: Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J. (eds.) RSFDGrC 2015. LNCS, vol. 9437, pp. 138–148. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Ciucci, D., Dubois, D., Prade, H.: Opposition in rough set theory. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 504–513. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Ciucci, D., Dubois, D., Prade, H.: The structure of opposition in rough set theory and formal concept analysis - toward a new bridge between the two settings. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 154–173. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    David, H.A.: The Method of Paired Comparisons. Oxford University Press, New York (1988) zbMATHGoogle Scholar
  11. 11.
    Diestel, R.: Graph Theory. Graduate Text in Mathematics, 4th edn. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Düntsch, I., Orlowska, E.: Beyond modalities: sufficiency and mixed algebras. In: Orlowska, E., Szalas, A. (eds.) Relational Methods for Computer Science Applications, pp. 263–285. Physica-Verlag, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Universalis 6, 149–169 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Epasto, A., Feldman, J., Lattanzi, S., Leonardi, S., Mirrokni, V., Reduce and aggregate: similarity ranking in multi-categorical bipartite graphs. In: Proceedings of World wide web (WWW 2014), pp. 349–360. ACMGoogle Scholar
  15. 15.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Kuznetsov, S.O.: Mathematical aspects of concept analysis. J. Math. Sci. 80, 1654–1698 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inform. 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yao, Y.Y.: Duality in rough set theory based on the square of opposition. Fundam. Informaticae 127, 49–64 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Yao, J.T., Ciucci, D., Zhang, Y.: Generalized rough sets. In: Kacprzyk, P. (ed.) Handbook of Computational Intelligence, Chapter 25, pp. 413–424. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2, 103–120 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Giampiero Chiaselotti
    • 2
  • Davide Ciucci
    • 1
  • Tommaso Gentile
    • 2
  • Federico Infusino
    • 2
  1. 1.DISCoUniversity of Milano – BicoccaMilanItaly
  2. 2.Department of Mathematics and InformaticsUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations